Cell adhesion to the extracellular matrix and its natural outcome of cell spreading, along with the maintenance of barrier activity, are essential behaviors of epithelial cells, including retinal pigment epithelium (RPE). Disruptions in these characteristics can result in severe vision-threatening diseases such as diabetic macular edema and age-related macular degeneration. However, the precise mechanisms underlying how RPE cells regulate their barrier integrity and cell spreading are not fully understood.
View Article and Find Full Text PDFBackground: Retinal degenerative diseases such as diabetic retinopathy and diabetic macular edema are characterized by impaired retinal endothelial cells (RECs) functionality. While the role of glycolysis in glucose homeostasis is well-established, its contributions to REC barrier assembly and cell spreading remain poorly understood. This study aimed to investigate the importance of upper glycolytic components in regulating the behavior of human RECs (HRECs).
View Article and Find Full Text PDFProliferative diabetic retinopathy (PDR) remains a leading cause of blindness despite progress in screening and treatment. Recently, the Warburg effect, a metabolic alteration affecting amino acid (AA) metabolism in proliferating cells, has drawn attention regarding its role in PDR. This study aimed to investigate the impact of the Warburg effect on AA metabolism in human retinal endothelial cells (HRECs) subjected to PDR-associated risk factors and validate the findings in patients with PDR.
View Article and Find Full Text PDF