Considerable efforts have been made to exploit cardioprotective drugs and gene delivery systems for myocardial infarction (MI). The promising cardioprotective effects of recombinant human erythropoietin (rHuEPO) protein in animal experiments have not been consistently reproduced in clinical human trials of acute MI; however, the mechanisms underlying the inconsistent discrepancies are not yet fully understood. We hypothesized that the plasmid human erythropoietin gene (phEPO) delivered by our bioreducible polymer might produce cardioprotective effects on post-infarct cardiac remodeling.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) gene therapy to promote therapeutic angiogenesis has been advanced as an alternative treatment for myocardial ischemia. The unregulated expression of VEGF and the use of viral vectors, however, have slowed the clinical development of angiogenic gene therapy. The development of clinically beneficial angiogenic gene therapy requires a disease-specific gene expression system and an efficient non-viral gene carrier.
View Article and Find Full Text PDFMyocardial ischemia needs an alternative treatment such as gene therapy for the direct protection of cardiomyocytes against necrosis or apoptosis and to prevent the development of myocardial fibrosis and cardiac dysfunction. Despite the utility of gene therapy, its therapeutic use is limited due to inadequate transfection in cardiomyocytes and difficulty in directing to ischemic myocardium. Here, we present a polymeric gene carrier that is capable of targeting ischemic myocardium, resulting in high localization within the ischemic zone of the left ventricle (LV) of an ischemia/reperfusion (I/R) rat model upon systemic administration.
View Article and Find Full Text PDFFeeding tube placement for enteral nutrition (EN) support is widely used in both critically ill and stable chronically ill patients who are unable to meet their nutrition needs orally. Nasal or oral feeding tubes can be performed blindly at the bedside or with fluoroscopic or endoscopic guidance into the stomach or small bowel. Percutaneous feeding tubes are used when EN support is required for longer periods (>4-6 weeks) and are most commonly placed endoscopically or radiographically.
View Article and Find Full Text PDFImplantation of skeletal myoblasts to the heart has been investigated as a means to regenerate and protect the myocardium from damage after myocardial infarction. While several animal studies utilizing skeletal myoblasts have reported positive findings, results from clinical studies have been mixed. In this study we utilize a newly developed bioreducible polymer system to transfect skeletal myoblasts with a plasmid encoding vascular endothelial growth factor (VEGF) prior to implantation into acutely ischemic myocardium.
View Article and Find Full Text PDF