Background: Rivoceranib is an oral, selective tyrosine kinase inhibitor of vascular endothelial growth factor receptor-2. ANGEL (NCT03042611) was a global, randomized, double-blinded, placebo-controlled, phase 3 study evaluating rivoceranib as 3rd-line or ≥4th-line therapy in patients with advanced/metastatic gastric or gastroesophageal junction (GEJ) cancer.
Methods: Patients had failed ≥2 lines of chemotherapy and were randomized 2:1 to rivoceranib 700 mg once daily or placebo with best supportive care.
Purpose: This study aimed to report the results from an early-phase study of rivoceranib, an oral tyrosine kinase inhibitor highly selective for vascular endothelial growth factor receptor 2, in patients with advanced solid tumors.
Materials And Methods: In this open-label, single-arm, dose-escalating, multicenter three-part phase 1/2a trial, patients had advanced solid tumors refractory to conventional therapy. Part 1 evaluated the safety and pharmacokinetics of five ascending once-daily doses of rivoceranib from 81 mg to 685 mg.
Fundam Clin Pharmacol
February 2022
Rivoceranib is a selective inhibitor of VEGFR-2 being developed for the treatment of solid tumor. The objective of the study was to evaluate the effect of food on bioavailability as well as single- and multiple-dose pharmacokinetics (PKs) of 81 and 201 mg doses of rivoceranib. The study was conducted as a two-part study.
View Article and Find Full Text PDFRivoceranib (known in China as apatinib) is a selective vascular endothelial growth factor receptor-2 (VEGFR-2) tyrosine kinase inhibitor which inhibits angiogenesis in solid tumors. The aim of study was to evaluate potential pharmacokinetic (PK) differences between the Caucasian, Japanese, and Chinese populations. An open-label, single-dose, parallel-design PK study of rivoceranib was conducted in Caucasian, Japanese, and Chinese subjects.
View Article and Find Full Text PDFConsiderable efforts have been made to exploit cardioprotective drugs and gene delivery systems for myocardial infarction (MI). The promising cardioprotective effects of recombinant human erythropoietin (rHuEPO) protein in animal experiments have not been consistently reproduced in clinical human trials of acute MI; however, the mechanisms underlying the inconsistent discrepancies are not yet fully understood. We hypothesized that the plasmid human erythropoietin gene (phEPO) delivered by our bioreducible polymer might produce cardioprotective effects on post-infarct cardiac remodeling.
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) gene therapy to promote therapeutic angiogenesis has been advanced as an alternative treatment for myocardial ischemia. The unregulated expression of VEGF and the use of viral vectors, however, have slowed the clinical development of angiogenic gene therapy. The development of clinically beneficial angiogenic gene therapy requires a disease-specific gene expression system and an efficient non-viral gene carrier.
View Article and Find Full Text PDFMyocardial ischemia needs an alternative treatment such as gene therapy for the direct protection of cardiomyocytes against necrosis or apoptosis and to prevent the development of myocardial fibrosis and cardiac dysfunction. Despite the utility of gene therapy, its therapeutic use is limited due to inadequate transfection in cardiomyocytes and difficulty in directing to ischemic myocardium. Here, we present a polymeric gene carrier that is capable of targeting ischemic myocardium, resulting in high localization within the ischemic zone of the left ventricle (LV) of an ischemia/reperfusion (I/R) rat model upon systemic administration.
View Article and Find Full Text PDFFeeding tube placement for enteral nutrition (EN) support is widely used in both critically ill and stable chronically ill patients who are unable to meet their nutrition needs orally. Nasal or oral feeding tubes can be performed blindly at the bedside or with fluoroscopic or endoscopic guidance into the stomach or small bowel. Percutaneous feeding tubes are used when EN support is required for longer periods (>4-6 weeks) and are most commonly placed endoscopically or radiographically.
View Article and Find Full Text PDFImplantation of skeletal myoblasts to the heart has been investigated as a means to regenerate and protect the myocardium from damage after myocardial infarction. While several animal studies utilizing skeletal myoblasts have reported positive findings, results from clinical studies have been mixed. In this study we utilize a newly developed bioreducible polymer system to transfect skeletal myoblasts with a plasmid encoding vascular endothelial growth factor (VEGF) prior to implantation into acutely ischemic myocardium.
View Article and Find Full Text PDFA cardiomyocyte-targeted Fas siRNA delivery system was developed using primary cardiomyocyte (PCM) specific peptide-modified polymers with high transfection efficiency and low cytotoxicity. Primary cardiomyocyte (PCM) specific peptide, selected by phage display, was conjugated to bioreducible poly(cystamine bisacrylamide-diaminohexane, CBA-DAH) (PCD). The specificity of the PCM-modified polymer to cardiomyocytes was confirmed by competition study with free PCM ligand and by delivery to non-cardiomyocyte NIH 3T3 fibroblasts.
View Article and Find Full Text PDFIt is difficult to quantify NH4+ by ion chromatography in the presence of high concentrations of Na+ due to peak overlap. The Dionex IonPac CS15 column, which contains phosphonate, carboxylate, and 18-crown-6 functional groups, was originally developed to overcome this problem. We have found that the addition of 18-crown-6 to the eluent promotes improved peak resolution between Na+ and NH4+ even at concentrations as high as 60,000 to 1 using this column.
View Article and Find Full Text PDF