Biochim Biophys Acta
May 2015
Five yeast enzymes synthesizing various glycerophospholipids belong to the CDP-alcohol phosphatidyltransferase (CAPT) superfamily. They only share the so-called CAPT motif, which forms the active site of all these enzymes. Bioinformatic tools predict the CAPT motif of phosphatidylinositol synthase Pis1 as either ER luminal or cytosolic.
View Article and Find Full Text PDFMost integral membrane proteins of yeast with two or more membrane-spanning sequences have not yet been crystallized and for many of them the side on which the active sites or ligand-binding domains reside is unknown. Also, bioinformatic topology predictions are not yet fully reliable. However, so-called low-resolution biochemical methods can be used to locate hydrophilic loops or individual residues of polytopic membrane proteins at one or the other side of the membrane.
View Article and Find Full Text PDFAll glycerophospholipids are made from phosphatidic acid, which, according to the traditional view, is generated at the cytosolic surface of the ER. In yeast, phosphatidic acid is synthesized de novo by two acyl-CoA-dependent acylation reactions. The first is catalysed by one of the two homologous glycerol-3-phosphate acyltransferases Gpt2p/Gat1p and Sct1p/Gat2p, the second by one of the two 1-acyl-sn-glycerol-3-phosphate acyltransferases Slc1p and Ale1p/Slc4p.
View Article and Find Full Text PDFIn Caenorhabditis elegans, germ cells develop as spermatids in the larva and as oocytes in the adult. Such fundamentally different gametes are produced through a fine-tuned balance between feminizing and masculinizing genes. For example, the switch to oogenesis requires repression of the fem-3 mRNA through the mog genes.
View Article and Find Full Text PDF