The complex nature of atherosclerosis demands high-resolution approaches to identify subtle thrombogenic lesions and define the risk of plaque rupture. Here, we report the proof-of-concept use of a multimodal scanning fiber endoscope (SFE) consisting of a single optical fiber scanned by a piezoelectric drive that illuminates tissue with red, blue, and green laser beams, and digitally reconstructs images at 30 Hz with high resolution and large fields-of-view. By combining laser-induced reflectance and fluorescence emission of intrinsic fluorescent constituents in arterial tissues, the SFE allowed us to co-generate endoscopic videos with a label-free biochemical map to derive a morphological and spectral classifier capable of discriminating early, intermediate, advanced, and complicated atherosclerotic plaques.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
March 2016
Background & Aims: Conventional white-light colonoscopy aims to reduce the incidence and mortality of colorectal cancer (CRC). CRC has been found to arise from missed polypoid and flat precancerous lesions. We aimed to establish proof-of-concept for real-time endoscopic imaging of colonic adenomas using a near-infrared peptide that is specific for claudin-1.
View Article and Find Full Text PDFBiomed Opt Express
August 2015
We demonstrate a handheld multiphoton endomicroscope with 3.4 mm distal diameter that can repetitively image mouse colon in vivo. A 2D resonant MEMS mirror was developed to perform beam scanning in a Lissajous pattern.
View Article and Find Full Text PDFThe elementary function method is an approximate method for propagation calculations in spatially, partially coherent light in two dimensions. In this paper, we present the numerical application of this method to a 248 nm UV excimer laser source. We present experimental results of the measurement of the degree of spatial coherence and the beam profile of this source.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
July 2009
The theory of propagation of partially coherent light is well known, but performing numerical calculations still presents a difficulty because of the dimensionality of the problem. We propose using a recently introduced method based on the use of elementary functions [Wald et al. Proc.
View Article and Find Full Text PDF