Cystic fibrosis (CF) is the most common monogenic autosomal recessive disease in Caucasians caused by pathogenic mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene (). Significant small molecule therapeutic advances over the past two decades have been made to target the defective CFTR protein and enhance its function. To address the most prevalent defect of the defective CFTR protein (i.
View Article and Find Full Text PDFBackground: The form(s) of amyloid-β peptide (Aβ) associated with the pathology characteristic of Alzheimer's disease (AD) remains unclear. In particular, the neurotoxicity of intraneuronal Aβ accumulation is an issue of considerable controversy; even the existence of Aβ deposits within neurons has recently been challenged by Winton and co-workers. These authors purport that it is actually intraneuronal APP that is being detected by antibodies thought to be specific for Aβ.
View Article and Find Full Text PDFA series of quinoline containing histamine H(3) antagonists is reported herein. These analogs were synthesized via the Friedlander quinoline synthesis between an aminoaldehyde intermediate and a methyl ketone allowing for a wide diversity of substituents at the 2-position of the quinoline ring.
View Article and Find Full Text PDFThree novel series of histamine H(4) receptor (H(4)R) antagonists containing the 2-aminopyrimidine motif are reported. The best of these compounds display good in vitro potency in both functional and binding assays. In addition, representative compounds are able to completely block itch responses when dosed ip in a mouse model of H(4)-agonist induced scratching, thus demonstrating their activities as H(4)R antagonists.
View Article and Find Full Text PDFExisting data on the expression of H(4) histamine receptor in the CNS are conflicting and inconclusive. In this report, we present the results of experiments that were conducted in order to elucidate H(4) receptor expression and localization in the brain, spinal cord, and dorsal root ganglia (DRG). Here we show that transcripts of H(4) receptor are present in all analyzed regions of the human CNS, including spinal cord, hippocampus, cortex, thalamus and amygdala, with the highest levels of H(4) mRNA detected in the spinal cord.
View Article and Find Full Text PDFcis-4-(Piperazin-1-yl)-5,6,7a,8,9,10,11,11a-octahydrobenzofuro[2,3-h]quinazolin-2-amine, 4 (A-987306) is a new histamine H(4) antagonist. The compound is potent in H(4) receptor binding assays (rat H(4), K(i) = 3.4 nM, human H(4) K(i) = 5.
View Article and Find Full Text PDFWe have recently identified three splice isoforms of the histamine H(3) receptor in multiple brain regions of cynomolgus monkey (Macaca fascicularis). Two of the novel isoforms displayed a deletion in the third intracellular loop (H(3)(413) and H(3)(410)), the third isoform H(3)(335) displayed a deletion in the i3 intracellular loop and a complete deletion of the putative fifth transmembrane domain TM5. We have confirmed by RT-PCR the expression of full-length H(3)(445) mRNA as well as H(3)(413), H(3)(410), and H(3)(335) splice isoform mRNA in multiple monkey brain regions including the frontal, parietal and occipital cortex, parahippocampal gyrus, hippocampus, amygdala, caudate nucleus, putamen, thalamus, hypothalamus, and cerebellum.
View Article and Find Full Text PDFGuanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding assays were established and utilized as a reliable and high-capacity functional assay for determining antagonist and inverse agonist pharmacological parameters of novel histamine H(3) ligands, at the recombinant human H(3) receptor. [(35)S]GTPgammaS binding assays were performed with membranes prepared from human embryonic kidney 293 cells stably expressing the full-length (445 amino acids) human H(3) receptor isoform, at approximately 1 pmol/mg of protein. Utilizing robotic liquid handling, assay filtration, and scintillation counting in a 96-well format, concentration-response curves were determined for up to 40 compounds per assay.
View Article and Find Full Text PDFAutosomal dominant mutations that increase amyloid-beta(1-42) (Abeta42) cause familial Alzheimer's disease (AD), and the most common genetic risk factor for AD is the presence of the epsilon4 allele of apolipoprotein E (apoE). Previously, we characterized stable preparations of Abeta42 oligomers and fibrils and reported that oligomers induced a 10-fold greater increase in neurotoxicity than fibrils in Neuro-2A cells. To determine the effects of apoE genotype on Abeta42 oligomer- and fibril-induced neurotoxicity in vitro, we co-cultured wild type (WT) neurons with glia from WT, apoE-knockout (apoE-KO), and human apoE2-, E3-, and E4-targeted replacement (TR) mice.
View Article and Find Full Text PDFActivated glia, as a result of chronic inflammation, are associated with amyloid-beta peptide (Abeta) deposits in the brain of Alzheimer's disease (AD) patients. In vitro, glia are activated by Abeta inducing secretion of pro-inflammatory molecules. Recent studies have focused on soluble oligomers (or protofibrils) of Abeta as the toxic species in AD.
View Article and Find Full Text PDFAbnormalities in the processing of amyloid precursor protein to amyloid-beta (Abeta) are causal factors, and the presence of the epsilon4 allele of apolipoprotein E (apoE) is the primary risk factor for Alzheimer's disease (AD). Based, at least in part, on these genetics, the potential structural and functional interactions between these two proteins are the focus of our research. To understand the nature of the physical interactions between apoE and Abeta, we initially utilized gel-shift assays to demonstrate that native apoE2 and E3 (associated with lipid particles) form an SDS-stable complex with Abeta that is more abundant than the apoE4:Abeta complex.
View Article and Find Full Text PDFGenetic evidence predicts a causative role for amyloid-beta (A beta) in Alzheimer's disease. Recent debate has focused on whether fibrils (amyloid) or soluble oligomers of A beta are the active species that contribute to neurodegeneration and dementia. We developed two aggregation protocols for the consistent production of stable oligomeric or fibrillar preparations of A beta-(1-42).
View Article and Find Full Text PDF