Publications by authors named "Arlee V Smith"

Demonstration of broadband nanosecond coherent anti-Stokes Raman scattering (CARS) using a burst-mode-pumped noncolinear optical parametric oscillator (NOPO) has been achieved at a pulse repetition rate of 40 kHz. The NOPO is pumped with the 355-nm output of a burst-mode Nd:YAG laser at 50 mJ/pulse for 45 pulses and produces an output centered near 607 nm, with a bandwidth of 370 cm at energies of 5 mJ/pulse. A planar BOXCARS phase matching scheme uses the broadband NOPO output as the Stokes beam and the narrowband 532-nm burst-mode output for the two CARS pump beams for single-laser-shot nitrogen thermometry in near adiabatic H/air flames at temperatures up to 2200 K.

View Article and Find Full Text PDF

We use a detailed numerical model of stimulated thermal Rayleigh scattering to compute mode instability thresholds in Tm(3+)-doped fiber amplifiers. The fiber amplifies 2040 nm light using a 790 nm pump. The cross-relaxation process is strong, permitting power efficiencies of 60%.

View Article and Find Full Text PDF

We show by numerical modeling that saturation of the population inversion reduces the stimulated thermal Rayleigh gain relative to the laser gain in large mode area fiber amplifiers. We show how to exploit this effect to raise mode instability thresholds by a substantial factor. We also demonstrate that when suppression of stimulated Brillouin scattering and the population saturation effect are both taken into account, counter-pumped amplifiers have higher mode instability thresholds than co-pumped amplifiers for fully Yb3+ doped cores, and confined doping can further raise the thresholds.

View Article and Find Full Text PDF

We present a detailed description of the methods used in our model of mode instability in high-power, rare earth-doped, large-mode-area fiber amplifiers. Our model assumes steady-periodic behavior, so it is appropriate to operation after turn on transients have dissipated. It can be adapted to transient cases as well.

View Article and Find Full Text PDF

Using numerical simulations of thermally induced mode coupling we show how the instability threshold can be substantially reduced if the pump or injected signal is modulated in the kHz range. We also show how the mode coupling gain varies with the frequency offset of the parasitic mode. We model thresholds when the source of detuned light is quantum background, amplitude modulation of the pump power, and amplitude modulation of the signal seed.

View Article and Find Full Text PDF

Using a beam propagation model of Yb3+ doped, CW fiber amplifiers we show that gain saturation by a strong fundamental mode significantly suppresses the growth of higher order modes with parallel polarization, but enhances the growth of higher order modes with perpendicular polarization. We quantify this effect in straight and bent fibers, with full core or restricted area doping.

View Article and Find Full Text PDF

For powers exceeding a sharp threshold in the vicinity of several hundred watts the beam quality from some narrow bandwidth fiber amplifiers is severely degraded. We show that this can be caused by transverse thermal gradients induced by the amplification process.

View Article and Find Full Text PDF

We measured the bulk optical damage thresholds of pure and Nd-doped ceramic yttrium aluminum garnet (YAG), and of pure, Nd-doped, Cr-doped, and Yb-doped crystalline YAG. We used 9.9 ns, 1064 nm, single-longitudinal mode, TEM00 pulses, to determine that the breakdown thresholds are deterministic, with multiple-pulse thresholds ranging from 1.

View Article and Find Full Text PDF

We measured bulk and surface dielectric breakdown thresholds of pure silica for 14 ps and 8 ns pulses of 1064 nm light. The thresholds are sharp and reproducible. For the 8 ns pulses the bulk threshold irradiance is 4.

View Article and Find Full Text PDF

We performed laboratory and numerical modeling studies of an optical parametric oscillator with 90 degrees intracavity image rotation. We found that the signal beam was more symmetric than that from comparable cavities without image rotation, and it had low values of the beam quality factor, M(2) . Oscillator performance agreed well with our numerical model.

View Article and Find Full Text PDF

We numerically simulate the performance of the ultrasimple frequency-resolved-optical-gating (FROG) technique, GRENOUILLE, for measuring ultrashort laser pulses. While simple in practice, GRENOUILLE has many theoretical subtleties because it involves the second-harmonic generation of relatively tightly focused and broadband pulses. In addition, these processes occur in a thick crystal, in which the phase-matching bandwidth is deliberately made narrow compared to the pulse bandwidth.

View Article and Find Full Text PDF

We have numerically investigated the behavior of the fundamental mode of a step-index, multimode (MM) fiber as the optical power approaches the self-focusing limit (P(crit)). The analysis includes the effects of gain and bending (applicable to coiled fiber amplifiers). We find power-dependent, stationary solutions that propagate essentially without change at beam powers approaching P(crit) in straight and bent fibers.

View Article and Find Full Text PDF

We report the experimental realization of a new type of optical parametric oscillator in which oscillation is achieved by polarization rotation in a linear retarder, followed by nonlinear polarization mixing. The mixing is performed by a type II degenerate parametric downconversion in a periodically poled KTP crystal pumped by a 1064 nm pulsed Nd:YAG pump. A single, linearly polarized beam, precisely at the degenerate wavelength is generated.

View Article and Find Full Text PDF

We use the separated-beams method to measure the second-order nonlinear optical tensors of the crystals KTiOPO4, KTiOAsO4, RbTiOPO4, and RbTiOAsO4 for second-harmonic generation of 1064-nm light. Our results agree well with most previous measurements but have improved precision.

View Article and Find Full Text PDF

We show how a passive image-rotating optical resonator can be used to convert a linearly polarised, lowest-order Gaussian beam into a radially polarized beam. The image and polarization rotation of the cavity removes the frequency degeneracy of the modes, making it possible to select the radially polarized mode by cavity tuning. With the addition of gain, the same cavity should operate as a radially polarized laser when injection seeded at the proper wavelength.

View Article and Find Full Text PDF