Proc Natl Acad Sci U S A
November 2024
In this work, the phenomenon of strain induced by a mismatch in thermal expansion coefficients between a thin film and its substrate is harnessed in a new context, replacing the canonical planar support with a three-dimensional (3-D), nanoconfining scaffold in which we embed a material of interest. In this manner, we demonstrate a general approach to exert a continuously tunable, triaxial, tensile strain, defying the Poisson ratio of the embedded material and achieving the exotic condition of "negative pressure." This approach is hypothetically generalizable to materials of low modulus and high thermal expansion coefficient, and we use it here to achieve negative pressure in perovskite-phase CsPbI embedded within the cylindrical pores of anodic aluminum oxide membranes.
View Article and Find Full Text PDFHerein it is demonstrated that, under conditions relevant to perovskite synthesis (>140 °C in air), fluoride can topochemically react across the interface between a halide perovskite and a fluoropolymer when in close contact, thereby creating a small quantity of strongly bonded lead fluoride species. The quantity increases with temperature and processing duration. Photoinduced charge carrier lifetime provides a metric for the resulting changes in electronic structure of the perovskite.
View Article and Find Full Text PDF