We study large deviations of the one-point height H of a stochastic interface, governed by the Golubović-Bruinsma equation, ∂_{t}h=-ν∂_{x}^{4}h+(λ/2)(∂_{x}h)^{2}+sqrt[D]ξ(x,t), where h(x,t) is the interface height at point x and time t and ξ(x,t) is the Gaussian white noise. The interface is initially flat, and H is defined by the relation h(x=0,t=T)=H. We focus on the short-time limit, T≪T_{NL}, where T_{NL}=ν^{5/7}(Dλ^{2})^{-4/7} is the characteristic nonlinear time of the system.
View Article and Find Full Text PDFThe "Brownian bees" model describes an ensemble of N= const independent branching Brownian particles. The conservation of N is provided by a modified branching process. When a particle branches into two particles, the particle which is farthest from the origin is eliminated simultaneously.
View Article and Find Full Text PDFWe investigate nonequilibrium fluctuations of a solid surface governed by the stochastic Mullins-Herring equation with conserved noise. This equation describes surface diffusion of adatoms accompanied by their exchange between the surface and the bulk of the solid, when desorption of adatoms is negligible. Previous works dealt with dynamic scaling behavior of the fluctuating interface.
View Article and Find Full Text PDFUsing the weak-noise theory, we evaluate the probability distribution P(H,t) of large deviations of height H of the evolving surface height h(x,t) in the Kardar-Parisi-Zhang equation in one dimension when starting from a flat interface. We also determine the optimal history of the interface, conditioned on reaching the height H at time t. We argue that the tails of P behave, at arbitrary time t>0, and in a proper moving frame, as -lnP∼|H|^{5/2} and ∼|H|^{3/2}.
View Article and Find Full Text PDFSuppose that a d-dimensional domain is filled with a gas of (in general, interacting) diffusive particles with density n_{0}. A particle is absorbed whenever it reaches the domain boundary. Employing macroscopic fluctuation theory, we evaluate the probability P that no particles are absorbed during a long time T.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2014
Let a lattice gas of constant density, described by the symmetric simple exclusion process, be brought in contact with a "target": a spherical absorber of radius R. Employing the macroscopic fluctuation theory (MFT), we evaluate the probability P(T) that no gas particle hits the target until a long but finite time T. We also find the most likely gas density history conditional on the nonhitting.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
January 2013
The position of an invasion front, propagating into an unstable state, fluctuates because of the shot noise coming from the discreteness of reacting particles and stochastic character of the reactions and diffusion. A recent macroscopic theory [Meerson and Sasorov, Phys. Rev.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2008
We employ hydrodynamic equations to investigate nonstationary channel flows of freely cooling dilute gases of hard and smooth spheres with nearly elastic particle collisions. This work focuses on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2006
Let the interface between two immiscible fluids in a Hele-Shaw cell have, at t = 0, a wedge shape. As a wedge is scale-free, the fluid relaxation dynamics are self-similar. We find the dynamic exponent of this self-similar flow and show that the interface shape is given by the solution of an unusual inverse problem of potential theory.
View Article and Find Full Text PDFWe investigate quasi-two-dimensional relaxation, by surface tension, of a long straight stripe of inviscid fluid trapped inside a viscous fluid in a Hele-Shaw cell. Combining analytical and numerical solutions, we describe the emergence of a self-similar dumbbell shape and find nontrivial dynamic exponents that characterize scaling behavior of the dumbbell dimensions.
View Article and Find Full Text PDF