Publications by authors named "Arkady Bitler"

Measuring the mechanical properties of single-stranded DNA (ssDNA) is a challenge that has been addressed by different methods lately. The short persistence length, fragile structure, and the appearance of stem loops complicate the measurement, and this leads to a large variability in the measured values. Here we describe an innovative method based on DNA origami for studying the biophysical properties of ssDNA.

View Article and Find Full Text PDF

Cell surfaces are densely populated with various proteins. Aggregation of these proteins to nanoscale clusters can be critical for various cellular functions such as signaling, motility and division. Quantitative characterization of corresponding structures and their changes might be useful to understand these basic cell processes and serve as an early marker of cellular stress or diseases.

View Article and Find Full Text PDF

Cell-wall peptidoglycan (PG) of Gram-positive bacteria is a strong and elastic multi-layer designed to resist turgor pressure and determine the cell shape and growth. Despite its crucial role, its architecture remains largely unknown. Here using high-resolution multiparametric atomic force microscopy (AFM), we studied how the structure and elasticity of PG change when subjected to increasing turgor pressure in live Group B Streptococcus.

View Article and Find Full Text PDF

The roles of metal ions in promoting amyloid β-protein (Aβ) oligomerization associated with Alzheimer disease are increasingly recognized. However, the detailed structures dictating toxicity remain elusive for Aβ oligomers stabilized by metal ions. Here, we show that small Zn(2+)-bound Aβ1-40 (Zn(2+)-Aβ40) oligomers formed in cell culture medium exhibit quasi-spherical structures similar to native amylospheroids isolated recently from Alzheimer disease patients.

View Article and Find Full Text PDF

Enzymatic processing of extracellular matrix (ECM) macromolecules by matrix metalloproteases (MMPs) is crucial in mediating physiological and pathological cell processes. However, the molecular mechanisms leading to effective physiological enzyme-ECM interactions remain elusive. Only scant information is available on the mode by which matrix proteases degrade ECM substrates.

View Article and Find Full Text PDF

One of the most important steps in the process of viral infection is a fusion between cell membrane and virus, which is mediated by the viral envelope glycoprotein. The study of activity of the glycoprotein in the post-fusion state is important for understanding the progression of infection. Here we present a first real-time kinetic study of the activity of gp41 (the viral envelope glycoprotein of human immunodeficiency virus-HIV) and its two mutants in the post-fusion state with nanometer resolution by atomic force microscopy (AFM).

View Article and Find Full Text PDF

We report on the observation of an anisotropic magnetic dipolar interaction that results from binding PbSe nanoparticles (NPs) to GaAs surfaces by an organic linker. The observed dependence of the blocking temperature on the alignment of the linking molecule relative to the surface normal indicates that the anisotropy is caused by the attachment of the organic linker to the NPs. The presented results may serve as a strategy for fine-tuning the magnetic interactions and anisotropy on surfaces.

View Article and Find Full Text PDF

Membrane fusion between the human immunodeficiency virus (HIV) and the target cell plasma membrane is correlated with conformational changes in the HIV gp41 glycoprotein, which include an early exposed conformation (prehairpin) and a late low energy six helix bundle (SHB) conformation also termed hairpin. Peptides resembling regions from the exposed prehairpin have been previously studied for their interaction with membranes. Here we report on the expression, purification, SHB stability, and membrane interaction of the full-length ectodomain of the HIV gp41 and its two deletion mutants, all in their SHB-folded state.

View Article and Find Full Text PDF

Background: Dialysis patients, often carriers of Staphylococcus aureus in their nares, are at high risk of S. aureus infections.

Methods: We examined whether RNAIII inhibiting peptide (RIP), which interferes with quorum sensing mechanisms, reduces adherence of S.

View Article and Find Full Text PDF