A novel approach to the utilization of nuclear magnetic resonance (NMR) spectroscopy data in the prediction of logD through machine learning algorithms is shown. In the analysis, a data set of 754 chemical compounds, organized into 30 clusters, was evaluated using advanced machine learning models, such as Support Vector Regression (SVR), Gradient Boosting, and AdaBoost, and comprehensive validation and testing methods were employed, including 10-fold cross-validation, bootstrapping, and leave-one-out. The study revealed the superior performance of the Bucket Integration method for dimensionality reduction, consistently yielding the lowest root mean square error (RMSE) across all data sets and normalization schemes.
View Article and Find Full Text PDFIn search of new dual-acting histamine H/sigma-1 receptor ligands, we designed a series of compounds structurally based on highly active ligands previously studied and described by our team. However, we kept in mind that within the previous series, a pair of closely related compounds, and , differing only in the piperazine/piperidine moiety in the structural core showed a significantly different affinity at sigma-1 receptors (σRs). Therefore, we first focused on an in-depth analysis of the protonation states of piperazine and piperidine derivatives in the studied compounds.
View Article and Find Full Text PDFAs a member of the class I PI3K family, phosphoinositide 3-kinase (PI3K) is an important signaling biomolecule that controls immune cell differentiation, proliferation, migration, and survival. It also represents a potential and promising therapeutic approach for the management of numerous inflammatory and autoimmune diseases. We designed and assessed the biological activity of new fluorinated analogues of CPL302415, taking into account the therapeutic potential of our selective PI3K inhibitor and fluorine introduction as one of the most frequently used modifications of a lead compound to further improve its biological activity.
View Article and Find Full Text PDFPhosphoinositide 3-kinase (PI3K), a member of the class I PI3K family, is an essential signaling biomolecule that regulates the differentiation, proliferation, migration, and survival of immune cells. The overactivity of this protein causes cellular dysfunctions in many human disorders, for example, inflammatory and autoimmune diseases, including asthma or chronic obstructive pulmonary disease (COPD). In this work, we designed and synthesized a new library of small-molecule inhibitors based on indol-4-yl-pyrazolo[1,5-]pyrimidine with IC values in the low nanomolar range and high selectivity against the PI3K isoform.
View Article and Find Full Text PDFPhosphoinositide 3-kinase (PI3K) is the family of lipid kinases participating in vital cellular processes such as cell proliferation, growth, migration, or cytokines production. Due to the high expression of these proteins in many human cells and their involvement in metabolism regulation, normal embryogenesis, or maintaining glucose homeostasis, the inhibition of PI3K (especially the first class which contains four subunits: , , , ) is considered to be a promising therapeutic strategy for the treatment of inflammatory and autoimmune diseases such as systemic lupus erythematosus (SLE) or multiple sclerosis. In this work, we synthesized a library of benzimidazole derivatives of pyrazolo[1,5-]pyrimidine representing a collection of new, potent, active, and selective inhibitors of PI3K, displaying IC values ranging from 1.
View Article and Find Full Text PDFThe double Knoevenagel condensation of 1,4-dibenzoyloxyanthraquinone with methyl esters of arylacetic acids affords a series of compounds based upon a previously unknown 1,8-dioxa-benzo[e]pyrene-2,7-dione heterocyclic core. The aryl groups incorporated in the 3- and 6-positions can be oxidatively coupled to the π-expanded backbone to produce a further new heterocyclic core: 1,10-dioxa-dibenzo[dj]coronene-2,9-dione. The intriguing optical properties of these π-expanded coumarin derivatives are discussed and rationalized through quantum chemical calculations.
View Article and Find Full Text PDFNystatin A , a polyene macrolide antifungal antibiotic, in a slightly basic or acidic solution undergoes an intramolecular transformation, yielding a structural isomer, the translactonization product, iso-nystatin A with lactone ring diminished by two carbon atoms. Structural evidence is provided by advanced NMR and Mass Spectrometry (MS) studies. Molecular dynamics simulations and quantum mechanics calculations gave the insight into the course and mechanism of the transformation and its effect on the conformation of the subject molecule.
View Article and Find Full Text PDFNew synthetic methods leading towards π-expanded heterocycles are sought after mainly due to their promising opto-electronic properties. Subjecting 1,5,9,10-tetramethoxyanthracene to the modern Duff reaction conditions led to the formation of a compound possessing the 2-azabenzoanthrone (dibenzo[de,h]isoquinolin-7-on) skeleton instead of the expected dialdehyde. This non-typical course of reaction can be rationalized by the double electrophilic aromatic substitution at two neighboring electron-rich positions of anthracene followed by oxidation of the resulting intermediate to form a pyridine ring.
View Article and Find Full Text PDFPreviously unknown, vertically linked heterocycles comprised of benzofuran and iminocoumarin moieties have been synthesized directly from 1,5-dibenzoyloxyanthraquinone and arylacetonitriles via double Knoevenagel condensation followed by formal HCN elimination. The structural assembly of fully conjugated, electron-rich benzofuran and electron-deficient iminocoumarin is responsible for the strongly polarized nature of these heterocycles which translates into their polarity-sensitive fluorescence.
View Article and Find Full Text PDFSeven new oligomeric complexes of 4,4'-bipyridine; 3,3'-bipyridine; benzene-1,4-diamine; benzene-1,3-diamine; benzene-1,2-diamine; and benzidine with rhodium tetraacetate, as well as 4,4'-bipyridine with molybdenum tetraacetate, have been obtained and investigated by elemental analysis and solid-state nuclear magnetic resonance spectroscopy, (13)C and (15)N CPMAS NMR. The known complexes of pyrazine with rhodium tetrabenzoate, benzoquinone with rhodium tetrapivalate, 4,4'-bipyridine with molybdenum tetrakistrifluoroacetate and the 1 : 1 complex of 2,2'-bipyridine with rhodium tetraacetate exhibiting axial-equatorial ligation mode have been obtained as well for comparison purposes. Elemental analysis revealed 1 : 1 complex stoichiometry of all complexes.
View Article and Find Full Text PDF