DNA nanotechnology often requires collections of oligonucleotides called "DNA free energy gap codes" that do not produce erroneous crosshybridizations in a competitive muliplexing environment. This paper addresses the question of how to design these codes to accomplish a desired amount of work within an acceptable error rate. Using a statistical thermodynamic and probabilistic model of DNA code fidelity and mathematical random coding theory methods, theoretical lower bounds on the size of DNA codes are given.
View Article and Find Full Text PDFWe discuss the concept of t-gap block isomorphic subsequences and use it to describe new abstract string metrics that are similar to the Levenshtein insertion-deletion metric. Some of the metrics that we define can be used to model a thermodynamic distance function on single-stranded DNA sequences. Our model captures a key aspect of the nearest neighbor thermodynamic model for hybridized DNA duplexes.
View Article and Find Full Text PDF