Publications by authors named "Arjunan V"

Hepatocellular carcinoma (HCC) frequently recurs from minimal residual disease (MRD), which persists after therapy. Here, we identified mechanisms of persistence of residual tumor cells using post-chemoembolization human HCC (n = 108 patients, 1.07 million cells) and a transgenic mouse model of MRD.

View Article and Find Full Text PDF

The freshwater leaf fish belongs to the family Pristolepididae, restricted to Pamba and Chalakudy rivers of Kerala, India. In the present study, we sequenced the complete mitogenome of and analysed its phylogeny in the order Anabantiformes. The 16622-bp long genome comprised of 13 protein-coding genes, two rRNA genes, 22 transfer RNAs (tRNAs) genes and had a noncoding control region.

View Article and Find Full Text PDF

The incidence of hepatocellular carcinoma (HCC) is growing in the United States, especially among the elderly. Older patients are increasingly receiving transplants as a result of HCC, but the impact of advancing age on long-term posttransplant outcomes is not clear. To study this, we used data from the US Multicenter HCC Transplant Consortium of 4980 patients.

View Article and Find Full Text PDF

Background And Aims: Vascular invasion (VI) is a critical risk factor for HCC recurrence and poor survival. The molecular drivers of vascular invasion in HCC are open for investigation. Deciphering the molecular landscape of invasive HCC will help identify therapeutic targets and noninvasive biomarkers.

View Article and Find Full Text PDF

Long waiting times due to ongoing organ shortage have led to increased utilization of locoregional therapies (LRTs) to bridge patients with hepatocellular carcinoma (HCC) to liver transplantation (LT). We performed this study to evaluate the impact of LRTs on post-LT outcomes. We conducted a retrospective study of patients who were transplanted for HCC at Stanford University Hospital between 2008 and 2018 (n = 302).

View Article and Find Full Text PDF

The MYC oncogene is dysregulated in most human cancers and hence is an attractive target for cancer therapy. We and others have shown experimentally in conditional transgenic mouse models that suppression of the MYC oncogene is sufficient to induce rapid and sustained tumor regression, a phenomenon known as oncogene addiction. However, it is unclear whether a therapy that targets the MYC oncogene could similarly elicit oncogene addiction.

View Article and Find Full Text PDF

Spectroscopic and theoretical quantum chemical studies of 2,5-dihydrothiophene-1,1-dioxide and 3-methyl-2,5-dihydrothiophene-1,1-dioxide have been carried out by FTIR and FT-Raman spectral techniques along with B3LYP methods. The geometry of the compounds have been optimised by B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The geometrical parameters obtained at B3LYP levels have been compared with the experimental values.

View Article and Find Full Text PDF

Melaminium glutarate monohydrate has been synthesised and FTIR and FT-Raman spectral investigations are carried out. The molecular geometry and vibrational frequencies of melaminium glutarate monohydrate in the ground state have been determined by using B3LYP method with 6-31++G(**), 6-31++G and cc-pVDZ basis sets. The stability of the system, inter molecular hydrogen bonding and the electron donor-acceptor interactions of the complex have been investigated by using natural bonding orbital analysis.

View Article and Find Full Text PDF

Aromatic epoxides are causative factors for mutagenic and carcinogenic activity of polycyclic arenes. The 1,2- or 2,3-epoxy compounds are widely used to a considerable extent in the textile, plastics, pharmaceutical, cosmetics, detergent and photochemical industries. The FTIR and FT-Raman spectra of (1,2-epoxyethyl)benzene and (1,2-epoxy-2-phenyl)propane are recorded in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively.

View Article and Find Full Text PDF

The stable geometry of 2-hydroxy-4-methoxyacetophenone is optimised by DFT/B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry have been determined. The effects of substituents (hydroxyl, methoxy and acetyl groups) on the benzene ring vibrational frequencies are analysed.

View Article and Find Full Text PDF

The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry of trans-3-(trans-4-imidazolyl)acrylic acid have been determined from B3LYP methods with 6-311++G(**) and cc-pVTZ basis sets. The effects of substituents (acrylyl group) on the imidazole vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of trans-3-(trans-4-imidazolyl)acrylic acid have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations.

View Article and Find Full Text PDF

The Fourier transform infrared and FT-Raman spectra of 2-benzothiazole acetonitrile (BTAN) have been recorded in the range 4000-450 and 4000-100 cm(-1) respectively. The conformational analysis of the compound has been carried out to obtain the stable geometry of the compound. The complete vibrational assignment and analysis of the fundamental modes of the compound are carried out using the experimental FTIR and FT-Raman data and quantum chemical studies.

View Article and Find Full Text PDF

Optimised geometrical structural parameters, harmonic vibrational frequencies, natural bonding orbital analysis and frontier molecular orbitals are determined by B3LYP and B3PW91 methods. The exact geometry of 5-chloro-1-methyl-4-nitroimidazole is determined through conformational analysis. The experimentally observed infrared and Raman bands have been assigned and analysed.

View Article and Find Full Text PDF

O-desmethyltramadol is one of the main metabolites of tramadol widely used clinically and has analgesic activity. The FTIR and FT-Raman spectra of O-desmethyl tramadol hydrochloride are recorded in the solid phase in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The observed fundamentals are assigned to different normal modes of vibration.

View Article and Find Full Text PDF

The complete vibrational assignment and analysis of N-carbethoxyphthalimide were carried out using the experimental FTIR and FT-Raman data in the range 4000-450 and 4000-100 cm(-1), respectively along with quantum chemical studies of the compound using DFT-B3LYP gradient calculations employing the 6-31G**, 6-311++G** and cc-pVDZ basis sets. The 1H (400 MHz; CDCl3) and 13C (100 MHz;CDCl3) nuclear magnetic resonance (NMR) spectra were also recorded. Due to the partial ionic nature of the carbonyl group, the carbon atoms C1 and C3 in NCEP show downfield effect and the corresponding observed chemical shift of both are observed at 163.

View Article and Find Full Text PDF

The vibrational fundamental modes of 2-(methylthio)benzimidazole (2MTBI) have been analysed by combining FTIR, FT-Raman and quantum chemical calculations. The structural parameters of the compound are determined from the optimised geometry by B3LYP with 6-31G(∗∗), 6-311++G(∗∗) and cc-pVTZ basis sets and giving energies, harmonic vibrational frequencies, depolarisation ratios, IR intensities and Raman activities. (1)H and (13)C NMR spectra have been analysed and (1)H and (13)C nuclear magnetic resonance chemical shifts are calculated using the gauge independent atomic orbital (GIAO) method.

View Article and Find Full Text PDF

The vibrational assignment and analysis of the fundamental modes of the compounds acetoacetanilide (AAA), 2-chloroacetoacetanilide (2CAAA) and 2-methylacetoacetanilide (2MAAA) have been performed. Density functional theory studies have been carried out with B3LYP method utilising 6-311++G(**) and cc-pVTZ basis sets to determine structural, thermodynamic and vibrational characteristics of the compounds and also to understand the influence of chloro and methyl groups on the characteristic frequencies of amide (CONH) group. Intramolecular hydrogen bond exists in acetoacetanilide and o-substituted acetoacetanilide molecules and the N⋯O distance is found to be around 2.

View Article and Find Full Text PDF

The FTIR and FT-Raman spectra of 3,4-dimethoxybenzonitrile (34DMBN) have been analysed. Quantum chemical studies were performed with B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVTZ basis sets. The electron donating effect of -OCH3 and electron withdrawing effect of -C≡N groups on the ring parameters were thoroughly analysed.

View Article and Find Full Text PDF

The FTIR and FT-Raman spectra of 1,2,4-benzenetricarboxylic-1,2-anhydride (BTCA) have been recorded in the range 4000-400 and 4000-100 cm(-1), respectively. The complete vibrational assignments and analysis of BTCA have been performed. More support on the experimental findings was added from the quantum chemical studies performed with DFT (B3LYP, MP2, B3PW91) method using 6-311++G(**), 6-31G(**) and cc-pVTZ basis sets.

View Article and Find Full Text PDF

The solid phase FTIR and FT-Raman spectra of primidone were recorded in the regions 4000-400 cm(-1) and 4000-100 cm(-1), respectively. The vibrational spectra were analysed and the observed fundamentals were assigned and analysed. The experimental wavenumbers were compared with the theoretical scaled vibrational wavenumbers determined by DFT methods.

View Article and Find Full Text PDF

3-Acetylcoumarin (3AC) was synthesised by a Knoevenagel reaction. Conformational analysis using the B3LYP method was also carried out to determine the most stable conformation of the compound. FTIR and FT-Raman spectra of 3AC have been recorded in the range 4000-400 and 4000-100 cm(-1), respectively.

View Article and Find Full Text PDF

Experimental and theoretical quantum chemical studies were carried out on 4-hydroxybenzohydrazide (4HBH) and 4-aminobenzohydrazide (4ABH) using FTIR and FT-Raman spectral data. The structural characteristics and vibrational spectroscopic analysis were carried performed by quantum chemical methods with the hybrid exchange-correlation functional B3LYP using 6-31G(**), 6-311++G(**) and aug-cc-pVDZ basis sets. The most stable conformer of the title compounds have been determined from the analysis of potential energy surface.

View Article and Find Full Text PDF

The structural investigations of the molecular complex of melamine with maleic acid, namely melaminium maleate monohydrate have been carried out by quantum chemical methods in addition to FTIR, FT-Raman and far-infrared spectral studies. The quantum chemical studies were performed with DFT (B3LYP) method using 6-31G(**), cc-pVDZ and 6-311++G(**) basis sets to determine the energy, structural and thermodynamic parameters of melaminium maleate monohydrate. The hydrogen atom from maleic acid was transferred to the melamine molecule giving the singly protonated melaminium cation.

View Article and Find Full Text PDF