Objectives: This study aims to show the application of flexible statistical methods in real-world cost-effectiveness analyses applied in the cardiovascular field, focusing specifically on the use of proprotein convertase subtilisin-kexin type 9 inhibitors for hyperlipidemia.
Methods: The proposed method allowed us to use an electronic health database to emulate a target trial for cost-effectiveness analysis using multistate modeling and microsimulation. We formally established the study design and provided precise definitions of the causal measures of interest while also outlining the assumptions necessary for accurately estimating these measures using the available data.
Background: Machine learning (ML) methods to build prediction models starting from electrocardiogram (ECG) signals are an emerging research field. The aim of the present study is to investigate the performances of two ML approaches based on ECGs for the prediction of new-onset atrial fibrillation (AF), in terms of discrimination, calibration and sample size dependence.
Methods: We trained two models to predict new-onset AF: a convolutional neural network (CNN), that takes as input the raw ECG signals, and an eXtreme Gradient Boosting model (XGB), that uses the signal's extracted features.
J Cardiovasc Med (Hagerstown)
January 2021
Background: Much data about prescription adherence in patients with heart failure (HF) are available, but few exist about the evaluation of true patient adherence. Further, methods for analyzing this issue are poorly known.
Objectives: Our objective was to evaluate the impact of patient adherence to disease-modifying drugs after HF hospitalization in a community-based cohort.
Background: How different risk profiles of heart failure (HF) patients can influence multiple readmissions and outpatient management is largely unknown. We propose the application of two multi-state models in real world setting to jointly evaluate the impact of different risk factors on multiple hospital admissions, Integrated Home Care (IHC) activations, Intermediate Care Unit (ICU) admissions and death.
Methods And Findings: The first model (model 1) concerns only hospitalizations as possible events and aims at detecting the determinants of repeated hospitalizations.