Publications by authors named "Arjuna Nishantha Bandara Ellepola"

Introduction And Aims: Adhesion to buccal epithelial cells (BEC) and denture acrylic surfaces (DAS), germ tube (GT) formation, cell surface hydrophobicity (CSH), and haemolysin production are attributes associated with pathogenicity of Candida. Candida albicans and Candida dubliniensis are allied in causing oral candidosis. Lysozyme and lactoferrin exert antimicrobial activity on a range of oral microorganisms, including Candida.

View Article and Find Full Text PDF

Background: Cigarette smoke is associated with higher oral Candida carriage and possible predisposition and increased susceptibility to oral candidal infection. Candida dubliniensis is associated with oral candidosis. Candidal adherence to buccal epithelial cells (BEC) and denture acrylic surfaces (DAS), germ tube (GT) formation, cell surface hydrophobicity (CSH) and hemolysin production are pathogenic traits of Candida.

View Article and Find Full Text PDF

Objective: Candidal adherence to denture acrylic surfaces (DAS) and oral buccal epithelial cells (BEC), formation of candidal germ tubes (GT), candidal cell surface hydrophobicity (CSH), and hemolysin production are important pathogenic traits of Candida. The antifungal drug-induced post-antifungal effect (PAFE) also impacts the virulence of Candida. Candida dubliniensis isolates are associated with the causation of oral candidiasis which could be managed with posaconazole.

View Article and Find Full Text PDF

Adhesion to buccal epithelial cells (BEC) and denture acrylic surfaces (DAS), germ tube (GT) formation and cell surface hydrophobicity (CSH) are all virulence traits involved in the pathogenicity of Candida. Post-antifungal effect (PAFE) also have a bearing on pathogenicity and virulence of Candida. Candida dubliniensis is associated with oral and systemic candidosis, which can be managed with caspofungin.

View Article and Find Full Text PDF