Publications by authors named "Arjun Sinkemani"

Low back pain (LBP) is a major physical and socioeconomic challenge worldwide. Nucleus pulposus (NP) is directly associated with LBP due to intervertebral disc (IVD) degeneration. IVD degeneration is mainly caused by structural and matrix-related changes within the IVD occurring during aging and degeneration.

View Article and Find Full Text PDF

Purpose: To elucidate the natural history of intervertebral disk (IVD) and characterize its embryonic beginnings and age-related degeneration.

Methods: Coronal sections of embryonic (E13.5-neonatal) and postnatal (4-60-week-old) Sprague-Dawley rat IVD were stained by a series of histological stainings (hematoxylin and eosin, Alcian blue, Picrosirius red, Masson, Periodic acid-Schiff).

View Article and Find Full Text PDF

Cellular loss induced by tumor necrosis factor alpha (TNF-α) contributes to the pathogenesis of intervertebral disc (IVD) degeneration. Cellular stress induced by TNF-α activates several processes to restore cell homeostasis. These processes include autophagy, endoplasmic reticulum stress, and related unfolded protein response (UPR).

View Article and Find Full Text PDF

Objectives: Tumour necrosis factor alpha (TNF-α) expressed by nucleus pulposus cells (NPCs) plays a critical role in intervertebral disc (IVD) degeneration. A key unfolded protein response (UPR) component, X-box binding protein 1 (XBP1) and nuclear factor-kappa B (NF-κB) are essential for cell survival and proliferation. The aim of our study was to elucidate the roles of XBP1 and NF-κB in IVD degeneration (IDD).

View Article and Find Full Text PDF

Objectives: Dysregulation of YAP by the Hippo signalling is associated with intervertebral disc degeneration (IDD). However, the relationship between the F-actin and Hippo pathway in IDD, and their effects on YAP remain poorly understood.

Methods: The characteristics of Hippo pathway and F-actin the in the NP (nucleus pulposus) and annulus fibrosus of immature, mature, ageing and disc degeneration model rats were observed by immunofluorescence, western blot and qPCR.

View Article and Find Full Text PDF

Acid-sensing ion channel 1a (ASIC1a) participates in human intervertebral disc degeneration (IVDD) and regulates the destiny of nucleus pulposus cells (NPCs) in acid stimulus. However, the mechanism of ASIC1a activation and its downstream pathway remain unclear. Endoplasmic reticulum (ER) stress also participates in the acid-induced apoptosis of NPCs.

View Article and Find Full Text PDF

The Hippo pathway plays important roles in wound healing, tissue repair and regeneration, and in the treatment of degenerative diseases, by regulating cell proliferation and apoptosis in mammals. Intervertebral disc degeneration (IDD) is one of the major causes of low back pain, a widespread issue associated with a heavy economic burden. However, the mechanism underlying how the Hippo pathway regulates IDD is not well understood.

View Article and Find Full Text PDF

Intervertebral disc (IVD) degeneration is closely related to inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α). The endoplasmic reticulum (ER) serves several important cell functions, which are essential for normal cell metabolism and survival. This study aims to clarify the role of ER stress and unfolded protein response (UPR) in TNF-α-induced biological changes in rat nucleus pulposus cells (NPCs) and IVD degeneration.

View Article and Find Full Text PDF

Notochord nucleus pulposus cells are characteristic of containing abundant and giant cytoplasmic vacuoles. This review explores the embryonic formation, biological function, and postnatal exhaustion of notochord vacuoles, aiming to characterize the signal network transforming the vacuolated nucleus pulposus cells into the vacuole-less chondrocytic cells. Embryonically, the cytoplasmic vacuoles within vertebrate notochord originate from an evolutionarily conserved vacuolation process during neurulation, which may continue to provide mechanical and signal support in constructing a mammalian intervertebral disc.

View Article and Find Full Text PDF

Study Design: Retrospective, case control evaluation of 86 patients who underwent microendoscopic discectomy (MED) and percutaneous transforaminal endoscopic discectomy (PTED) for the treatment of lumbar disc herniation (LDH).

Purpose: To evaluate the safety and the outcomes of MED and PTED for the treatment of LDH.

Overview Of Literature: MED and PTED are minimally invasive surgical techniques for lower back pain.

View Article and Find Full Text PDF