Variable temperature equilibrium studies were used to derive thermodynamic data for formation of eta(1) nitrile complexes with Mo(N[(t)Bu]Ar)(3), 1. (1-AdamantylCN = AdCN: DeltaH(degrees) = -6 +/- 2 kcal mol(-1), DeltaS(degrees) = -20 +/- 7 cal mol(-1) K(-1). C(6)H(5)CN = PhCN: DeltaH(degrees) = -14.
View Article and Find Full Text PDFSynthetic studies are reported that show that the reaction of either H2SnR2 (R = Ph, n-Bu) or HMo(CO)3(Cp) (1-H, Cp = eta(5)-C5H5) with Mo(N[t-Bu]Ar)3 (2, Ar = 3,5-C6H3Me2) produce HMo(N[t-Bu]Ar)3 (2-H). The benzonitrile adduct (PhCN)Mo(N[t-Bu]Ar)3 (2-NCPh) reacts rapidly with H2SnR2 or 1-H to produce the ketimide complex (Ph(H)C=N)Mo(N[t-Bu]Ar)3 (2-NC(H)Ph). The X-ray crystal structures of both 2-H and 2-NC(H)Ph are reported.
View Article and Find Full Text PDFEnthalpies of chalcogen atom transfer to Mo(N[t-Bu]Ar)3, where Ar = 3,5-C6H3Me2, and to IPr (defined as bis-(2,6-isopropylphenyl)imidazol-2-ylidene) have been measured by solution calorimetry leading to bond energy estimates (kcal/mol) for EMo(N[t-Bu]Ar)3 (E = S, 115; Se, 87; Te, 64) and EIPr (E = S, 102; Se, 77; Te, 53). The enthalpy of S-atom transfer to PMo(N[ t-Bu]Ar) 3 generating SPMo(N[t-Bu]Ar)3 has been measured, yielding a value of only 78 kcal/mol. The kinetics of combination of Mo(N[t-Bu]Ar)3 with SMo(N[t-Bu]Ar)3 yielding (mu-S)[Mo(N[t-Bu]Ar)3]2 have been studied, and yield activation parameters Delta H (double dagger) = 4.
View Article and Find Full Text PDFEnthalpies of oxidative addition of PhE-EPh (E = S, Se, Te) to the M(0) complexes M(PiPr3)2(CO)3 (M = Mo, W) to form stable complexes M(*EPh)(PiPr3)2(CO)3 are reported and compared to analogous data for addition to the Mo(III) complexes Mo(N[tBu]Ar)3 (Ar = 3,5-C6H3Me2) to form diamagnetic Mo(IV) phenyl chalcogenide complexes Mo(N[tBu]Ar)3(EPh). Reactions are increasingly exothermic based on metal complex, Mo(PiPr3)2(CO)3 < W(PiPr3)2(CO)3 < Mo(N[tBu]Ar)3, and in terms of chalcogenide, PhTe-TePh < PhSe-SePh < PhS-SPh. These data are used to calculate LnM-EPh bond strengths, which are used to estimate the energetics of production of a free *EPh radical when a dichalcogenide interacts with a specific metal complex.
View Article and Find Full Text PDFReaction of Ti[N(But)Ar]3 (Ar = 3,5-C6H3Me2 or Ar' = C6H5) with CO2 at -40 degrees C produces diamagmetic Ti(III) paddlewheel complexes with long Ti-Ti separations (>3.4 Angstrom), thus excluding direct Ti-Ti bonding. 1H NMR spectroscopy shows that the compounds are diamagnetic in solution in the temperature range of -65 to +70 degrees C.
View Article and Find Full Text PDFBeta-elimination is explored as a possible means of nitrogen-atom transfer into organic molecules. Molybdenum(IV) ketimide complexes of formula (Ar[t-Bu]N)3Mo(N=C(X)Ph), where Ar = 3,5-Me2C6H3 and X = SC6F5, SeC6F5, or O2CPh, are formally derived from addition of the carbene fragment [:C(X)Ph] to the terminal nitrido molybdenum(VI) complex (Ar[t-Bu]N)3Mo identical with N in which the nitrido nitrogen atom is installed by scission of molecular nitrogen. Herein the pivotal (Ar[t-Bu]N)3Mo(N=C(X)Ph) complexes are obtained through independent synthesis, and their propensity to undergo beta-X elimination, i.
View Article and Find Full Text PDFDescribed herein are heterobimetallic radical cross-coupling reactions between the benzonitrile adduct of the molybdenum(III) complex Mo(N[t-Bu]Ar)3 (Ar = 3,5-C6H3Me2) and titanium(III) complexes with carbon dioxide, pyridine, and benzophenone. The titanium(III) system employed was either Ti(N[t-Bu]Ar)3 (Ar = 3,5-C6H3Me2) or Ti(N[t-Bu]Ph)3. Crystal structure studies are described for the Mo/PhCN/CO2/Ti coupled system and for an analogue of the Mo/PhCN/Ph2CO/Ti coupled system in which PhCN is replaced with 2,6-Me2C6H3CN.
View Article and Find Full Text PDFDeprotonation of the titanium formate complex [Ar(t-Bu)N]3TiOC(O)H with LiN(i-Pr)2 resulted in the release of free CO and the formation of a titanium(IV) oxoanion complex, isolated as its lithium salt.
View Article and Find Full Text PDFMolybdenum chalcogenobenzimidates of formula (Ph[PhE]C=N)Mo(N[t-Bu]Ar)(3) (Ar = 3,5-C(6)H(3)Me(2)) have been obtained by treatment of Mo(N[t-Bu]Ar)(3) sequentially with benzonitrile and 0.5 equiv of PhEEPh (E = S, Se, and Te). Molecular structure determinations have been carried out for the S and Se variants.
View Article and Find Full Text PDF