Free-text information represents a valuable resource for epidemiological surveillance. Its unstructured nature, however, presents significant challenges in the extraction of meaningful information. This study presents a deep learning model for classifying otitis using pediatric medical records.
View Article and Find Full Text PDFWastewater-based epidemiology (WBE) is a non-invasive and cost-effective approach for monitoring the spread of a pathogen within a community. WBE has been adopted as one of the methods to monitor the spread and population dynamics of the SARS-CoV-2 virus, but significant challenges remain in the bioinformatic analysis of WBE-derived data. Here, we have developed a new distance metric, CoVdist, and an associated analysis tool that facilitates the application of ordination analysis to WBE data and the identification of viral population changes based on nucleotide variants.
View Article and Find Full Text PDFBackground: More than 6 million people in the United States have Alzheimer disease and related dementias, receiving help from more than 11 million family or other informal caregivers. A range of traditional interventions has been developed to support family caregivers; however, most of them have not been implemented in practice and remain largely inaccessible. While recent studies have shown that family caregivers of people with dementia use Twitter to discuss their experiences, methods have not been developed to enable the use of Twitter for interventions.
View Article and Find Full Text PDFObjective: Research on pharmacovigilance from social media data has focused on mining adverse drug events (ADEs) using annotated datasets, with publications generally focusing on 1 of 3 tasks: ADE classification, named entity recognition for identifying the span of ADE mentions, and ADE mention normalization to standardized terminologies. While the common goal of such systems is to detect ADE signals that can be used to inform public policy, it has been impeded largely by limited end-to-end solutions for large-scale analysis of social media reports for different drugs.
Materials And Methods: We present a dataset for training and evaluation of ADE pipelines where the ADE distribution is closer to the average 'natural balance' with ADEs present in about 7% of the tweets.
The increase of social media usage across the globe has fueled efforts in digital epidemiology for mining valuable information such as medication use, adverse drug effects and reports of viral infections that directly and indirectly affect population health. Such specific information can, however, be scarce, hard to find, and mostly expressed in very colloquial language. In this work, we focus on a fundamental problem that enables social media mining for disease monitoring.
View Article and Find Full Text PDFSummary: We present GeoBoost2, a natural language-processing pipeline for extracting the location of infected hosts for enriching metadata in nucleotide sequences repositories like National Center of Biotechnology Information's GenBank for downstream analysis including phylogeography and genomic epidemiology. The increasing number of pathogen sequences requires complementary information extraction methods for focused research, including surveillance within countries and between borders. In this article, we describe the enhancements from our earlier release including improvement in end-to-end extraction performance and speed, availability of a fully functional web-interface and state-of-the-art methods for location extraction using deep learning.
View Article and Find Full Text PDFJ Am Med Inform Assoc
December 2019
Objective: Twitter posts are now recognized as an important source of patient-generated data, providing unique insights into population health. A fundamental step toward incorporating Twitter data in pharmacoepidemiologic research is to automatically recognize medication mentions in tweets. Given that lexical searches for medication names suffer from low recall due to misspellings or ambiguity with common words, we propose a more advanced method to recognize them.
View Article and Find Full Text PDFPhylogeography research involving virus spread and tree reconstruction relies on accurate geographic locations of infected hosts. Insufficient level of geographic information in nucleotide sequence repositories such as GenBank motivates the use of natural language processing methods for extracting geographic location names (toponyms) in the scientific article associated with the sequence, and disambiguating the locations to their co-ordinates. In this paper, we present an extensive study of multiple recurrent neural network architectures for the task of extracting geographic locations and their effective contribution to the disambiguation task using population heuristics.
View Article and Find Full Text PDFDiscrete phylogeography using software such as BEAST considers the sampling location of each taxon as fixed; often to a single location without uncertainty. When studying viruses, this implies that there is no possibility that the location of the infected host for that taxa is somewhere else. Here, we relaxed this strong assumption and allowed for analytic integration of uncertainty for discrete virus phylogeography.
View Article and Find Full Text PDFMotivation: Virus phylogeographers rely on DNA sequences of viruses and the locations of the infected hosts found in public sequence databases like GenBank for modeling virus spread. However, the locations in GenBank records are often only at the country or state level, and may require phylogeographers to scan the journal articles associated with the records to identify more localized geographic areas. To automate this process, we present a named entity recognizer (NER) for detecting locations in biomedical literature.
View Article and Find Full Text PDFSummary: GeoBoost is a command-line software package developed to address sparse or incomplete metadata in GenBank sequence records that relate to the location of the infected host (LOIH) of viruses. Given a set of GenBank accession numbers corresponding to virus GenBank records, GeoBoost extracts, integrates and normalizes geographic information reflecting the LOIH of the viruses using integrated information from GenBank metadata and related full-text publications. In addition, to facilitate probabilistic geospatial modeling, GeoBoost assigns probability scores for each possible LOIH.
View Article and Find Full Text PDFBackground: Pregnancy exposure registries are the primary sources of information about the safety of maternal usage of medications during pregnancy. Such registries enroll pregnant women in a voluntary fashion early on in pregnancy and follow them until the end of pregnancy or longer to systematically collect information regarding specific pregnancy outcomes. Although the model of pregnancy registries has distinct advantages over other study designs, they are faced with numerous challenges and limitations such as low enrollment rate, high cost, and selection bias.
View Article and Find Full Text PDF