Biochar is a promising material and fuel for environmental sustainability. Microalgal biochar is produced using catalytic microwave torrefaction of Chlorella vulgaris FSP-E residue with magnesium oxide as a microwave absorber to enhance heating. Using Taguchi experimental design (TED) and Analysis of Variance (ANOVA), the effects of microwave power, catalyst concentration, and duration on energy yield are investigated.
View Article and Find Full Text PDFBiohydrogen and biosyngas are among the sustainable bioenergy products from biomass resources through gasification. Microwave-assisted gasification (MAG) is still a novel technology, but it is definitely a promising conversion technology to achieve a sustainable bioeconomy. Although this technology shows a massive potential to be fully implemented in the near future, the selectivity and efficiency of biohydrogen and syngas production still need enhancements and further research to secure a cost-effective and energy-efficient industrialization.
View Article and Find Full Text PDFAs plastics have been omnipresent in society ever since their introduction in 1907, global plastic production has ballooned in the 20th century or the Plasticene Era (Plastic Age). After their useful life span, they deliberately or accidentally, are disposed of in the environment. Influenced by different factors, plastics undergo fragmentation into microplastics (MPs) and present hazardous risks in all life forms including humans.
View Article and Find Full Text PDF