Fibrosis is a characteristic of many cardiac diseases for which no effective treatment exists. We have developed an ex vivo flow system, which allows induction of cardiac fibrosis in intact adult mouse hearts. Lineage-tracing studies indicated that the collagen-producing myofibroblasts originated from the resident fibroblasts.
View Article and Find Full Text PDFThe androgen receptor (AR) is a crucial player in various aspects of male reproduction and has been associated with the development and progression of prostate cancer (PCa). Therefore, the protein is the linchpin of current PCa therapies. Despite great research efforts, the AR signaling pathway has still not been deciphered, and the emergence of resistance is still the biggest problem in PCa treatment.
View Article and Find Full Text PDFTreatment of castration-resistant prostate cancer remains a challenging clinical problem. Despite the promising effects of immunotherapy in other solid cancers, prostate cancer has remained largely unresponsive. Oncolytic viruses represent a promising therapeutic avenue, as oncolytic virus treatment combines tumour cell lysis with activation of the immune system and mounting of effective anti-tumour responses.
View Article and Find Full Text PDFTransformed epithelial cells can activate programs of epithelial plasticity and switch from a sessile, epithelial phenotype to a motile, mesenchymal phenotype. This process is linked to the acquisition of an invasive phenotype and the formation of distant metastases. The development of compounds that block the acquisition of an invasive phenotype or revert the invasive mesenchymal phenotype into a more differentiated epithelial phenotype represent a promising anticancer strategy.
View Article and Find Full Text PDFPreclinical knowledge of dysregulated pathways and potential biomarkers for urological cancers has undergone limited translation into the clinic. Moreover, the low approval rate of new anticancer drugs and the heterogeneous drug responses in patients indicate that current preclinical models do not always reflect the complexity of malignant disease. Patient-derived tumour models used in preclinical uro-oncology research include 3D culture systems, organotypic tissue slices and patient-derived xenograft models.
View Article and Find Full Text PDFMore effective therapy for patients with either muscle-invasive or high-risk non-muscle-invasive urothelial carcinoma of the bladder (UCB) is an unmet clinical need. For this, drug repositioning of clinically approved drugs represents an interesting approach. By repurposing existing drugs, alternative anticancer therapies can be introduced in the clinic relatively fast, because the safety and dosing of these clinically approved pharmacological agents are generally well known.
View Article and Find Full Text PDFPurpose: To isolate, culture, and characterize primary human choroidal endothelial cells, and to assess their responsiveness to corticosteroids, in order to enable knowledge gain on the pathogenesis of central serous chorioretinopathy.
Methods: Choroidal endothelial cells were isolated from cadaveric human donors. Magnetic-activated cell sorting with anti-human CD31 was performed for choroidal endothelial cell isolation.
Urological malignancies, including prostate and bladder carcinoma, represent a major clinical problem due to the frequent occurrence of therapy resistance and the formation of incurable distant metastases. As a result, there is an urgent need for versatile and predictive disease models for the assessment of the individualized drug response in urological malignancies. Compound testing on cultured patient-derived tumor tissues could represent a promising approach.
View Article and Find Full Text PDFProstate cancer is the most common malignancy diagnosed in men in the western world. The development of distant metastases and therapy resistance are major clinical problems in the management of prostate cancer patients. In order for prostate cancer to metastasize to distant sites in the human body, prostate cancer cells have to migrate and invade neighboring tissue.
View Article and Find Full Text PDF