Publications by authors named "Arja Paananen"

Cellulose nanofibers (CNF) are the most abundant renewable nanoscale fibers on Earth, and their use in the design of hybrid materials is ever more acclaimed, although it has been mostly limited, to date, to CNF derivatives obtained covalent functionalization. Herein, we propose a noncovalent approach employing a set of short peptides - DFNKF, DF(I)NKF, and DF(F)NKF - as supramolecular additives to engineer hybrid hydrogels and films based on unfunctionalized CNF. Even at minimal concentrations (from 0.

View Article and Find Full Text PDF

We report surprising morphological changes of suspension droplets (containing class II hydrophobin protein HFBI from Trichoderma reesei in water) as they evaporate with a contact line pinned on a rigid solid substrate. Both pendant and sessile droplets display the formation of an encapsulating elastic film as the bulk concentration of solute reaches a critical value during evaporation, but the morphology of the droplet varies significantly: for sessile droplets, the elastic film ultimately crumples in a nearly flattened area close to the apex while in pendant droplets, circumferential wrinkling occurs close to the contact line. These different morphologies are understood through a gravito-elastocapillary model that predicts the droplet morphology and the onset of shape changes, as well as showing that the influence of the direction of gravity remains crucial even for very small droplets (where the effect of gravity can normally be neglected).

View Article and Find Full Text PDF

High strength, hardness, and fracture toughness are mechanical properties that are not commonly associated with the fleshy body of a fungus. Here, we show with detailed structural, chemical, and mechanical characterization that is an exception, and its architectural design is a source of inspiration for an emerging class of ultralightweight high-performance materials. Our findings reveal that .

View Article and Find Full Text PDF

Gas vesicles used as contrast agents for noninvasive ultrasound imaging must be formulated to be stable, and their mechanical properties must be assessed. We report here the formation of perfluoro--butane microbubbles coated with surface-active proteins that are produced by filamentous fungi (hydrophobin HFBI from ). Using pendant drop and pipette aspiration techniques, we show that these giant gas vesicles behave like glassy polymersomes, and we discover novel gas extraction regimes.

View Article and Find Full Text PDF

Hydrophobins are surface-active proteins produced by filamentous fungi. The amphiphilic structure of hydrophobins is very compact, containing a distinct hydrophobic patch on one side of the molecule, locked by four intramolecular disulfide bridges. Hydrophobins form dimers and multimers in solution to shield these hydrophobic patches from water exposure.

View Article and Find Full Text PDF

Protein engineering shows a wide range of possibilities for designing properties in novel materials. Following inspiration from natural systems we have studied how combinations or duplications of protein modules can be used to engineer their interactions and achieve functional properties. Here we used cellulose binding modules (CBM) coupled to spider silk N-terminal domains that dimerize in a pH-sensitive manner.

View Article and Find Full Text PDF

A new method is demonstrated for preparing antifouling and low nonspecific adsorption surfaces on poorly reactive hydrophobic substrates, without the need for energy-intensive or environmentally aggressive pretreatments. The surface-active protein hydrophobin was covalently modified with a controlled radical polymerization initiator and allowed to self-assemble as a monolayer on hydrophobic surfaces, followed by the preparation of antifouling surfaces by Cu(0)-mediated living radical polymerization of poly(ethylene glycol) methyl ether acrylate (PEGA) performed in situ. By taking advantage of hydrophobins to achieve at the same time the immobilization of protein A, this approach allowed to prepare surfaces for IgG1 binding featuring greatly reduced nonspecific adsorption.

View Article and Find Full Text PDF

The mechanism of silk assembly, and thus the cues for the extraordinary properties of silk, can be explored by studying the simplest protein parts needed for the formation of silk-like materials. The recombinant spider silk protein 4RepCT, consisting of four repeats of polyalanine and glycine-rich segments (4Rep) and a globular C-terminal domain (CT), has previously been shown to assemble into silk-like fibers at the liquid-air interface. Herein, we study the interfacial behavior of the two parts of 4RepCT, revealing new details on how each protein part is crucial for the silk assembly.

View Article and Find Full Text PDF

Hydrophobins have raised lots of interest as powerful surface adhesives. However, it remains largely unexplored how their strong and versatile surface adhesion is linked to their unique amphiphilic structural features. Here, we develop an AFM-based single-molecule force spectroscopy assay to quantitatively measure the binding strength of hydrophobin to various types of surfaces both in isolation and in preformed protein films.

View Article and Find Full Text PDF

Cross-linked and decolorized lignin nanoparticles (LNPs) were prepared enzymatically and chemically from softwood Kraft lignin. Colloidal lignin particles (CLPs, ca. 200 nm) in a non-malodorous aqueous dispersion could be dried and redispersed in tetrahydrofuran (THF) or in water retaining their stability i.

View Article and Find Full Text PDF

The adhesive and mechanical properties of a modular fusion protein consisting of two different types of binding units linked together via a flexible resilin-like-polypeptide domain are quantified. The adhesive domains have been constructed from fungal cellulose-binding modules (CBMs) and an amphiphilic hydrophobin HFBI. This study is carried out by single-molecule force spectroscopy, which enables stretching of single molecules.

View Article and Find Full Text PDF

We investigated how a genetically engineered resilin fusion protein modifies cellulose surfaces. We characterized the pH-responsive behavior of a resilin-like polypeptide (RLP) having terminal cellulose binding modules (CBM) and showed its binding to cellulose nanofibrils (CNF). Characterization of the resilin fusion protein at different pHs revealed substantial conformational changes of the protein, which were observed as swelling and contraction of the protein layer bound to the nanocellulose surface.

View Article and Find Full Text PDF

Hydrophobins are surface-active proteins that form a hydrophobic, water-repelling film around aerial fungal structures. They have a compact, particle-like structure, in which hydrophilic and hydrophobic regions are spatially separated. This surface property renders them amphiphilic and is reminiscent of synthetic Janus particles.

View Article and Find Full Text PDF

We use surface-specific vibrational sum-frequency generation spectroscopy (VSFG) to study the structure and self-assembling mechanism of the class I hydrophobin SC3 from Schizophyllum commune and the class II hydrophobin HFBI from Trichoderma reesei. We find that both hydrophobins readily accumulate at the water-air interface and form rigid, highly ordered protein films that give rise to prominent VSFG signals. We identify several resonances that are associated with β-sheet structures and assign them to the central β-barrel core present in both proteins.

View Article and Find Full Text PDF

We demonstrate a label-free biosensor concept based on specific receptor modules, which provide immobilization and selectivity to the desired analyte molecules, and on charge sensing with a graphene field effect transistor. The receptor modules are fusion proteins in which small hydrophobin proteins act as the anchor to immobilize the receptor moiety. The functionalization of the graphene sensor is a single-step process based on directed self-assembly of the receptor modules on a hydrophobic surface.

View Article and Find Full Text PDF

Hydrophobins are natural surfactant proteins endowed with exceptional surface activity and film-forming capabilities and their use as effective "fluorine-free fluorosurfactants" has been recently reported. In order to increase their fluorophilicity further, here we report the preparation of a unique fluorous-modified hydrophobin, named F-HFBI. F-HFBI was found to be more effective than its wild-type parent protein HFBI at reducing interface tension of water at both air/water and oil/water interfaces, being particularly effective at the fluorous/water interface.

View Article and Find Full Text PDF

Hydrophobins are extracellular proteins produced by filamentous fungi. They show a variety of functions at interfaces that help fungi to adapt to their environment by, for example, adhesion, formation of coatings, and lowering the surface tension of water. Hydrophobins fold into a globular structure and have a distinct hydrophobic patch on their surface that makes these proteins amphiphilic.

View Article and Find Full Text PDF

Enzymes can be used to enable a specific and controlled approach for structural modifications of protein networks in food technology. Enzymatically induced cross-links between proteins in the continuous phase and/or at interfaces result in better stabilisation and enhanced material properties in foams and emulsions. In this work the interfacial properties of β-casein and к-casein films were investigated with a special focus on the mechanism of transglutaminase (TG) induced cross-linking at the air/water interface.

View Article and Find Full Text PDF

Micelles can be formed from coenzyme Q10 (CoQ10) and dipotassium glycyrrhizate (GZK2) by using an inclusion complex of CoQ10 with γ-cyclodextrin (γ-CD). The mechanism of micelle formation was kinetically investigated. Adding GZK2 to a supersaturated solution of the CoQ10/γ-CD inclusion complex led to a linear increase in the solubility of CoQ10 due to the formation of micelles of CoQ10 when the molar ratio of GZK2/γ-CD increased to ∼1.

View Article and Find Full Text PDF

Hydrophobins represent an important group of proteins from both a biological and nanotechnological standpoint. They are the means through which filamentous fungi affect their environment to promote growth, and their properties at interfaces have resulted in numerous applications. In our study we have combined protein docking, molecular dynamics simulation, and electron cryo-microscopy to gain atomistic level insight into the surface structure of films composed of two class II hydrophobins: HFBI and HFBII produced by Trichoderma reesei.

View Article and Find Full Text PDF

Surface plasmon resonance (SPR) has been used to assay the roles of amino acid residues in the substrate binding cleft of Trichoderma harzianum chitinase Chit42, which belongs to the glycoside hydrolase family 18 (GH-18). Nine different Chit42 variants having amino acid mutations along the binding site cleft at subsites -4 to +2 were created and characterized with regard to their affinity toward chitinous and non-chitinous oligosaccharides. The catalytically inactive Chit42 mutant E172Q was used as the template for making the additional mutations.

View Article and Find Full Text PDF

We present an approach where biomolecular self-assembly is used in combination with lithography to produce patterns of metallic nanoparticles on a silicon substrate. This is achieved through a two-step method, resulting in attachment of nanoparticles on desired sites on the sample surfaces, which allowed a detailed characterization. First, a genetically modified hydrophobin protein, NCysHFBI, was attached by self-assembly on a hydrophobic surface or a surface patterned with hydrophobic and hydrophilic domains.

View Article and Find Full Text PDF

Carbohydrate-protein interactions govern many crucial life processes involved in cell recognition events, but are often difficult to study because the interactions are weak, and multivalent exposure appears to be crucial for their biological function. We have used self-assembled monolayers (SAMs) of neoglycoconjugates as a model system to probe the specific interactions between the lectin wheat germ agglutinin (WGA) and monosaccharides by surface plasmon resonance (SPR) and atomic force microscopy (AFM) force measurements. SAMs presenting N-acetyl-D-glucosamine (GlcNAc) as a neoglycoconjugate were produced on gold surfaces, where the SAM formation was monitored using a quartz crystal microbalance (QCM) and shown to be a very rapid process.

View Article and Find Full Text PDF

Improved ways to cleave peptide chains at engineered sites easily and specifically would form useful tools for biochemical research. Uses of such methods include the activation or inactivation of enzymes or the removal of tags for enhancement of recombinant protein expression or tags used for purification of recombinant proteins. In this work we show by gel electrophoresis and mass spectroscopy that salts of Co(II) and Cu(II) can be used to cleave fusion proteins specifically at sites where sequences of His residues have been introduced by protein engineering.

View Article and Find Full Text PDF

Hydrophobins are amphiphilic proteins produced by filamentous fungi. They function in a variety of roles that involve interfacial interactions, as in growth through the air-water interface, adhesion to surfaces, and formation of coatings on various fungal structures. In this work, we have studied the formation of films of the class II hydrophobin HFBI from Trichoderma reesei at the air-water interface.

View Article and Find Full Text PDF