Publications by authors named "Arja Kaipainen"

Lineage plasticity, the ability of a cell to alter its identity, is an increasingly common mechanism of adaptive resistance to targeted therapy in cancer. An archetypal example is the development of neuroendocrine prostate cancer (NEPC) after treatment of prostate adenocarcinoma (PRAD) with inhibitors of androgen signaling. NEPC is an aggressive variant of prostate cancer that aberrantly expresses genes characteristic of neuroendocrine (NE) tissues and no longer depends on androgens.

View Article and Find Full Text PDF

Prostate cancers (PCs) with loss of the potent tumor suppressors TP53 and RB1 exhibit poor outcomes. TP53 and RB1 also influence cell plasticity and are frequently lost in PCs with neuroendocrine (NE) differentiation. Therapeutic strategies that address these aggressive variant PCs are urgently needed.

View Article and Find Full Text PDF

Purpose: Small-cell neuroendocrine prostate cancer (SCNPC) exhibits an aggressive clinical course and incidence rates seem to be increasing following resistance to potent androgen receptor (AR) antagonists. Currently, treatment options are limited and few model systems are available to identify new approaches for treatment. We sought to evaluate commonalities between SCNPC and other aggressive neuroendocrine carcinomas to identify therapeutic targets.

View Article and Find Full Text PDF

Clinical trials of high-dose androgen (HDA) therapy for prostate cancer (PC) have shown promising efficacy but are limited by lack of criteria to identify likely responders. To elucidate factors that govern the growth-repressive effects of HDAs, we applied an unbiased integrative approach using genetic screens and transcriptional profiling of PC cells with or without demonstrated phenotypic sensitivity to androgen-mediated growth repression. Through this comprehensive analysis, we identified genetic events and related signaling networks that determine the response to both HDA and androgen withdrawal.

View Article and Find Full Text PDF

Background: Testosterone is a driver of prostate cancer (PC) growth via ligand-mediated activation of the androgen receptor (AR). Tumors that have escaped systemic androgen deprivation, castration-resistant prostate cancers (CRPC), have measurable intratumoral levels of testosterone, suggesting that a resistance mechanism still depends on androgen-simulated growth. However, AR activation requires an optimal intracellular concentration of androgens, a situation challenged by low circulating testosterone concentrations.

View Article and Find Full Text PDF

Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease with diverse drivers of disease progression and mechanisms of therapeutic resistance. We conducted deep phenotypic characterization of CRPC metastases and patient-derived xenograft (PDX) lines using whole genome RNA sequencing, gene set enrichment analysis and immunohistochemistry. Our analyses revealed five mCRPC phenotypes based on the expression of well-characterized androgen receptor (AR) or neuroendocrine (NE) genes: (i) AR-high tumors (ARPC), (ii) AR-low tumors (ARLPC), (iii) amphicrine tumors composed of cells co-expressing AR and NE genes (AMPC), (iv) double-negative tumors (i.

View Article and Find Full Text PDF

Lymphatic malformations (LMs) are disfiguring congenital anomalies characterized by aberrant growth of lymphatic vessels. They are broadly categorized histopathologically as macrocystic and microcystic. Although sclerotherapy has shown some success in the treatment of macrocystic malformations, there has been less progress with developing treatment strategies for microcystic malformations.

View Article and Find Full Text PDF

Cancer therapy reduces tumor burden by killing tumor cells, yet it simultaneously creates tumor cell debris that may stimulate inflammation and tumor growth. Thus, conventional cancer therapy is inherently a double-edged sword. In this study, we show that tumor cells killed by chemotherapy or targeted therapy ("tumor cell debris") stimulate primary tumor growth when coinjected with a subthreshold (nontumorigenic) inoculum of tumor cells by triggering macrophage proinflammatory cytokine release after phosphatidylserine exposure.

View Article and Find Full Text PDF

Androgen receptor (AR) signaling is a distinctive feature of prostate carcinoma (PC) and represents the major therapeutic target for treating metastatic prostate cancer (mPC). Though highly effective, AR antagonism can produce tumors that bypass a functional requirement for AR, often through neuroendocrine (NE) transdifferentiation. Through the molecular assessment of mPCs over two decades, we find a phenotypic shift has occurred in mPC with the emergence of an AR-null NE-null phenotype.

View Article and Find Full Text PDF

Germline variation in solute carrier organic anion () genes influences cellular steroid uptake and is associated with prostate cancer outcomes. We hypothesized that, due to its steroidal structure, the CYP17A inhibitor abiraterone may undergo transport by -encoded transporters and that gene variation may influence intracellular abiraterone levels and outcomes. Steroid and abiraterone levels were measured in serum and tissue from 58 men with localized prostate cancer in a clinical trial of LHRH agonist plus abiraterone acetate plus prednisone for 24 weeks prior to prostatectomy.

View Article and Find Full Text PDF

As one of the most frequently diagnosed cancers in males, the development and progression of prostate cancer remains an open area of research. The role of lncRNAs in prostate cancer is an emerging field of study. In this review, we summarize what is currently known about lncRNAs in prostate cancer while focusing on a few key lncRNAs.

View Article and Find Full Text PDF

Epoxyeicosatrienoic acids (EETs), lipid mediators produced by cytochrome P450 epoxygenases, regulate inflammation, angiogenesis, and vascular tone. Despite pleiotropic effects on cells, the role of these epoxyeicosanoids in normal organ and tissue regeneration remains unknown. EETs are produced predominantly in the endothelium.

View Article and Find Full Text PDF

Epoxyeicosatrienoic acids (EETs) are small molecules produced by cytochrome P450 epoxygenases. They are lipid mediators that act as autocrine or paracrine factors to regulate inflammation and vascular tone. As a result, drugs that raise EET levels are in clinical trials for the treatment of hypertension and many other diseases.

View Article and Find Full Text PDF

Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively.

View Article and Find Full Text PDF

The chemotherapeutic agent etoposide is a topoisomerase II inhibitor widely used for cancer therapy. Low-dose oral etoposide, administered at close regular intervals, has potent anti-tumor activity in patients who are refractory to intravenous etoposide; however, the mechanism remains unclear. Since endothelial cells may be more sensitive than tumor cells to chemotherapy agents, we determined the effects of etoposide alone and in combination with oral cyclooxygenase-2 inhibitors and peroxisome-proliferator activated receptor γ ligands on angiogenesis and tumor growth in xenograft tumor models.

View Article and Find Full Text PDF

Background: Poly-N-acetyl glucosamine (pGlcNAc) nanofiber-based materials, produced by a marine microalga, have been characterized as effective hemostatic agents. In this study, we hypothesized that a pGlcNAc fiber patch may enhance wound healing in the db/db mouse.

Methods: pGlcNAc patches were applied on 1-cm, full-thickness, skin wounds in the db/db mouse model.

View Article and Find Full Text PDF

Angiogenesis and inflammation are central processes through which the tumor microenvironment influences tumor growth. We have demonstrated recently that peroxisome proliferator-activated receptor (PPAR)alpha deficiency in the host leads to overt inflammation that suppresses angiogenesis via excess production of thrombospondin (TSP)-1 and prevents tumor growth. Hence, we speculated that pharmacologic activation of PPARalpha would promote tumor growth.

View Article and Find Full Text PDF

The antithrombotic activity of heparin has largely been credited with the success found in some cancer treatment by heparin. There are, however, many potent growth factors involved in tumor and blood vessel growth that bind to heparin with high affinity and their regulation by heparin may play a role in heparin's efficacy. We therefore chose to study the activity of a heparin analog, sucrose octasulfate (SOS), which has been similarly shown to interact with heparin-binding growth factors.

View Article and Find Full Text PDF

Objectives: To quantify tissue remodeling induced by static and cyclical application of tensional forces in a living perfused tissue.

Background: Cells are able to respond to mechanical cues from the environment and can switch between proliferation and quiescence. However, the effects of different regimens of tension on living, perfused skin have not been characterized.

View Article and Find Full Text PDF

Fresh platelet preparations are utilized to treat a wide variety of wounds, although storage limitations and mixed results have hampered their clinical use. We hypothesized that concentrated lyophilized and reconstituted platelet preparations, preserved with trehalose, maintain and possibly enhance fresh platelets' ability to improve wound healing. We studied the ability of a single dose of trehalose lyophilized and reconstituted platelets to enhance wound healing when topically applied on full-thickness wounds in the genetically diabetic mouse.

View Article and Find Full Text PDF

Inflammation in the tumor bed can either promote or inhibit tumor growth. Peroxisome proliferator-activated receptor (PPAR)alpha is a central transcriptional suppressor of inflammation, and may therefore modulate tumor growth. Here we show that PPARalpha deficiency in the host leads to overt inflammation that suppresses angiogenesis via excess production of the endogenous angiogenesis inhibitor thrombospondin-1 and prevents tumor growth.

View Article and Find Full Text PDF

Tetraspanin protein CD151 is abundant on endothelial cells. To determine whether CD151 affects angiogenesis, Cd151-null mice were prepared. Cd151-null mice showed no vascular defects during normal development or during neonatal oxygen-induced retinopathy.

View Article and Find Full Text PDF

Fresh platelet concentrates are used in many centers to treat recalcitrant wounds. To extend the therapeutic shelf-life of platelets, we analyzed the wound-healing effects of fresh-frozen and freeze-dried (FD) platelet-rich plasma (PRP) using a diabetic mouse model. Db/db mice with 1.

View Article and Find Full Text PDF