Colorectal cancer (CRC) initiation and growth is often attributed to stem cells, yet little is known about the regulation of these cells. We show here that a subpopulation of Prox1-transcription-factor-expressing cells have stem cell activity in intestinal adenomas, but not in the normal intestine. Using in vivo models and 3D ex vivo organoid cultures of mouse adenomas and human CRC, we found that Prox1 deletion reduced the number of stem cells and cell proliferation and decreased intestinal tumor growth via induction of annexin A1 and reduction of the actin-binding protein filamin A, which has been implicated as a prognostic marker in CRC.
View Article and Find Full Text PDFIn the majority of microsatellite-stable colorectal cancers (CRCs), an initiating mutation occurs in the adenomatous polyposis coli (APC) or β-catenin gene, activating the β-catenin/TCF pathway. The progression of resulting adenomas is associated with oncogenic activation of KRas and inactivation of the p53 and TGF-β/Smad functions. Most established CRC cell lines contain mutations in the TGF-β/Smad pathway, but little is known about the function of TGF-β in the early phases of intestinal tumorigenesis.
View Article and Find Full Text PDFEstrogen receptor-α (ERα) and transforming growth factor-beta (TGF-β) signaling pathways are essential regulators during mammary gland development and tumorigenesis. Ski-related novel gene (SnoN) is an oncoprotein and a negative feedback inhibitor of TGF-β signaling. We have previously reported that low expression of SnoN in ERα positive breast carcinomas is associated with favorable prognosis (Zhang et al.
View Article and Find Full Text PDFTransforming growth factor-β (TGF-β) is a diverse cytokine regulating growth, apoptosis, differentiation, adhesion, invasion, and extracellular matrix production. Dysregulation of TGF-β is associated with fibrotic disorders and epithelial-mesenchymal transition, and has been linked with idiopathic pulmonary fibrosis (IPF). Cysteine-rich protein 1 (CRP1) is a small LIM-domain containing protein involved in smooth muscle differentiation.
View Article and Find Full Text PDFJ Mammary Gland Biol Neoplasia
June 2011
Estrogen receptor-α (ERα) and transforming growth factor (TGF)-β signaling pathways are major regulators during mammary gland development, function and tumorigenesis. Predominantly, they have opposing roles in proliferation and apoptosis. While ERα signaling supports growth and differentiation and is antiapoptotic, mammary gland epithelia cells are very sensitive to TGF-β-induced cell cycle arrest and apoptosis.
View Article and Find Full Text PDFp27Kip1 (p27) tumour suppressor protein is regulated by multiple mechanisms including its turnover, localization and complex formation with its key targets, cyclin-dependent kinases (CDK) and cyclins. We have earlier shown that p27 exists in cells in a form that lacks cyclin/CDK interactions (hence non-CDK, p27(NCDK)) but the nature of p27(NCDK) has remained unresolved. Here we demonstrate that the epitope recognized by the p27(NCDK)-specific antibody resides in the p27 CDK-interaction domain and that p27(NCDK) is regulated by the balance of CDK inhibitors and cyclin-CDK complexes.
View Article and Find Full Text PDFSki is an oncoprotein that negatively regulates transforming growth factor (TGF)-beta signaling. It acts as a transcriptional co-repressor by binding to TGF-beta signaling molecules, Smads. Efficient TGF-beta signaling is facilitated by rapid proteasome-mediated degradation of Ski by TGF-beta.
View Article and Find Full Text PDFBackground: Membrane fusion requires the formation of a complex between a vesicle protein (v-SNARE) and the target membrane proteins (t-SNAREs). Syntaxin 2 and 3 are t-SNAREs that, according to previous over-expression studies, are predominantly localized at the plasma membrane. In the present study we investigated localization of the endogenous syntaxin 2 and 3.
View Article and Find Full Text PDFMembrane fusion requires the formation of a complex between a vesicle protein (v-SNARE) and the target membrane proteins (t-SNAREs). Syntaxin 4 is a t-SNARE that, according to previous overexpression studies, is predominantly localized at the plasma membrane. In the present study endogenous syntaxin 4 was found in intracellular vesicular structures in addition to regions of the plasma membrane.
View Article and Find Full Text PDF