The study of local extinction times, together with the associated environmental and human population changes in the last glacial termination, provides insights into the causes of mega- and microfauna extinctions. In East-Central (EC) Europe, groups of Palaeolithic humans were present throughout the last glacial maximum, but disappeared suddenly around 15,200 cal BP. In this study cave sediment profiles dated using radiocarbon techniques and a large set of mammal bones dated directly by AMS C were used to determine local extinction times.
View Article and Find Full Text PDFHeavy metal pollution in the Danube Delta (in sediments, water and living organisms) has recently received increasing attention due to its impact on ecosystems health and water quality. However, long term records of heavy metal contamination are not available to date. In this study radiometric dating and geochemical analyses for major elements (Al, Fe, Ca and S) and metals (Cu, Zn, Pb, Ni, Cr and Cd) were performed on the top 4 m of a 9-m sediment core retrieved from the alluvial plain of Sulina distributary channel aiming to reconstruct the heavy metal geological background and contamination history and discuss the possible origins (natural vs.
View Article and Find Full Text PDFRecent decades have been marked by unprecendented environmental changes which threaten the integrity of freshwater systems and their ecological value. Although most of these changes can be attributed to human activities, disentagling natural and anthropogenic drivers remains a challenge. In this study, surface sediments from Lake Ighiel, a mid-altitude site in the Carpathian Mts (Romania) were investigated following high-resolution sedimentological, geochemical, environmental magnetic and diatom analyses supported by historical cartographic and documentary evidence.
View Article and Find Full Text PDFA multiproxy approach including chironomid, diatom, pollen and geochemical analyses was applied on short gravitational cores retrieved from an alpine lake (Lacul Bâlea) in the Southern Carpathians (Romania) to unveil how this lake responded to natural and anthropogenic forcing over the past 500 years. On the basis of chironomid and diatom assemblage changes, and supported by sediment chemical data and historical information, we distinguished two main phases in lake evolution. Before 1926 the lake was dominated by chironomids belonging to Micropsectra insignilobus-type and benthic diatoms suggesting well-oxygenated oligotrophic environment with only small-scale disturbance.
View Article and Find Full Text PDFThe occurrence of heavy rainfall events is expected to undergo significant changes under increasing anthropogenic forcing. South-eastern Europe is reacting rapidly to such changes, therefore understanding and forecasting of precipitation variability is vital to better comprehending environmental changes in this area. Here we present a sub-decadal reconstruction of enhanced rainfall events for the past 2000 years from the Southern Carpathians, Romania using peat geochemistry.
View Article and Find Full Text PDF