In a network of leaky integrate-and-fire (LIF) neurons, we investigate the functional role of irregular spiking at high rates. Irregular spiking is produced by either employing the partial somatic reset mechanism on every LIF neuron of the network or by using temporally correlated inputs. In both the benchmark problem of XOR (exclusive-OR) and in a general-sum game, it is shown that irrespective of the mechanism that is used to produce it, high firing irregularity enhances the learning capability of the spiking neural network trained with reward-modulated spike-timing-dependent plasticity.
View Article and Find Full Text PDFThis paper investigates the effectiveness of spiking agents when trained with reinforcement learning (RL) in a challenging multiagent task. In particular, it explores learning through reward-modulated spike-timing dependent plasticity (STDP) and compares it to reinforcement of stochastic synaptic transmission in the general-sum game of the Iterated Prisoner's Dilemma (IPD). More specifically, a computational model is developed where we implement two spiking neural networks as two "selfish" agents learning simultaneously but independently, competing in the IPD game.
View Article and Find Full Text PDFThis paper investigates multiagent reinforcement learning (MARL) in a general-sum game where the payoffs' structure is such that the agents are required to exploit each other in a way that benefits all agents. The contradictory nature of these games makes their study in multiagent systems quite challenging. In particular, we investigate MARL with spiking and nonspiking agents in the Iterated Prisoner's Dilemma by exploring the conditions required to enhance its cooperative outcome.
View Article and Find Full Text PDFIn this note, we demonstrate that the high firing irregularity produced by the leaky integrate-and-fire neuron with the partial somatic reset mechanism, which has been shown to be the most likely candidate to reflect the mechanism used in the brain for reproducing the highly irregular cortical neuron firing at high rates (Bugmann, Christodoulou, & Taylor, 1997; Christodoulou & Bugmann, 2001), enhances learning. More specifically, it enhances reward-modulated spike-timing-dependent plasticity with eligibility trace when used in spiking neural networks, as shown by the results when tested in the simple benchmark problem of XOR, as well as in a complex multiagent setting task.
View Article and Find Full Text PDFSelf-control can be defined as choosing a large delayed reward over a small immediate reward, while precommitment is the making of a choice with the specific aim of denying oneself future choices. Humans recognise that they have self-control problems and attempt to overcome them by applying precommitment. Problems in exercising self-control, suggest a conflict between cognition and motivation, which has been linked to competition between higher and lower brain functions (representing the frontal lobes and the limbic system respectively).
View Article and Find Full Text PDF