Publications by authors named "Aristidis Vrahatis"

Advancements in molecular biology have revolutionized our understanding of complex diseases, with Alzheimer's disease being a prime example. Single-cell sequencing, currently the most suitable technology, facilitates profoundly detailed disease analysis at the cellular level. Prior research has established that the pathology of Alzheimer's disease varies across different brain regions and cell types.

View Article and Find Full Text PDF

Neurocognitive Disorders (NCDs) pose a significant global health concern, and early detection is crucial for optimizing therapeutic outcomes. In parallel, mobile health apps (mHealth apps) have emerged as a promising avenue for assisting individuals with cognitive deficits. Under this perspective, we pioneered the development of the RODI mHealth app, a unique method for detecting aligned with the criteria for NCDs using a series of brief tasks.

View Article and Find Full Text PDF
Article Synopsis
  • The ongoing evolution of single-cell technology is generating vast amounts of data that help uncover the complexities of diseases, but challenges remain in accurately annotating cell types from gene expressions.
  • This study reviews significant cell type annotation techniques developed in the last four years and highlights the latest trends and advanced methods in the field.
  • The research indicates a growing need for additional tools with biological context and predicts that graph neural network approaches will likely lead advancements in this area in the future.
View Article and Find Full Text PDF

Prostate cancer (PCa), the most frequent and second most lethal cancer type in men in developed countries, is a highly heterogeneous disease. PCa heterogeneity, therapy resistance, stemness, and lethal progression have been attributed to lineage plasticity, which refers to the ability of neoplastic cells to undergo phenotypic changes under microenvironmental pressures by switching between developmental cell states. What remains to be elucidated is how to identify measurements of lineage plasticity, how to implement them to inform preclinical and clinical research, and, further, how to classify patients and inform therapeutic strategies in the clinic.

View Article and Find Full Text PDF

Post-traumatic stress disorder (PTSD) is a complex psychological disorder that develops following exposure to traumatic events. PTSD is influenced by catalytic factors such as dysregulated hypothalamic-pituitary-adrenal (HPA) axis, neurotransmitter imbalances, and oxidative stress. Genetic variations may act as important catalysts, impacting neurochemical signaling, synaptic plasticity, and stress response systems.

View Article and Find Full Text PDF

The development in the field of biomedical technology has brought significant progress in the diagnosis and prediction of many complex diseases. Part of this development is the single-cell RNA sequencing analysis, which allows the study of a complex disease in great depth at the cellular level. Such analyses can decipher the mechanisms that cause complex diseases, such as Alzheimer's disease (AD).

View Article and Find Full Text PDF

Gene regulatory network (GRN) inference from gene expression data is a highly complex and challenging task in systems biology. Despite the challenges, GRNs have emerged, and for complex diseases such as neurodegenerative diseases, they have the potential to provide vital information and identify key regulators. However, every GRN method produced predicts results based on its assumptions, providing limited biological insights.

View Article and Find Full Text PDF

System-level network-based approaches are an emerging field in the biomedical domain since biological networks can be used to analyze complicated biological processes and complex human disorders more efficiently. Network biomarkers are groups of interconnected molecular components causing perturbations in the entire network topology that can be used as indicators of pathogenic biological processes when studying a given disease. Although in the last years computational systems-based approaches have gained ground on the path to discovering new network biomarkers, in complex diseases like Alzheimer's disease (AD), this approach has still much to offer.

View Article and Find Full Text PDF

Protein folding is the process by which a polypeptide chain self-assembles into the correct three-dimensional structure, so that it ends up in the biologically active, native state. Under conditions of proteotoxic stress, mutations, or cellular aging, proteins can begin to aggregate into non-native structures such as ordered amyloid fibrils and plaques. Many neurodegenerative diseases involve the misfolding and aggregation of specific proteins into abnormal, toxic species.

View Article and Find Full Text PDF

The clinical pathology of neurodegenerative diseases suggests that earlier onset and progression are related to the accumulation of protein aggregates due to misfolding. A prominent way to extract useful information regarding single-molecule studies of protein misfolding at the nanoscale is by capturing the unbinding molecular forces through forced mechanical tension generated and monitored by an atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS). This AFM-driven process results in an amount of data in the form of force versus molecular extension plots (force-distance curves), the statistical analysis of which can provide insights into the underlying energy landscape and assess a number of characteristic elastic and kinetic molecular parameters of the investigated sample.

View Article and Find Full Text PDF

The high-throughput sequencing method known as RNA-Seq records the whole transcriptome of individual cells. Single-cell RNA sequencing, also known as scRNA-Seq, is widely utilized in the field of biomedical research and has resulted in the generation of huge quantities and types of data. The noise and artifacts that are present in the raw data require extensive cleaning before they can be used.

View Article and Find Full Text PDF

The increase in the population's life expectancy leads to an increase in the incidence of dementia and, therefore, in diseases such as Alzheimer's. Towards this direction, the HELIAD study is the first large-scale epidemiological study aimed at assessing epidemiological data on dementia, mild mental decline, and other neuropsychiatric disorders associated with old age. This is a huge study with several computational challenges, most of which can be addressed by machine learning processes.

View Article and Find Full Text PDF

Biosensing platforms have gained much attention in clinical practice screening thousands of samples simultaneously for the accurate detection of important markers in various diseases for diagnostic and prognostic purposes. Herein, a framework for the design of an innovative methodological approach combined with data processing and appropriate software in order to implement a complete diagnostic system for Parkinson's disease exploitation is presented. The integrated platform consists of biochemical and peripheral sensor platforms for measuring biological and biometric parameters of examinees, a central collection and management unit along with a server for storing data, and a decision support system for patient's state assessment regarding the occurrence of the disease.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is now classified as a silent pandemic due to concerning current statistics and future predictions. Despite this, no effective treatment or accurate diagnosis currently exists. The negative impacts of invasive techniques and the failure of clinical trials have prompted a shift in research towards non-invasive treatments.

View Article and Find Full Text PDF

Since December 2019, the coronavirus disease has significantly affected millions of people. Given the effect this disease has on the pulmonary systems of humans, there is a need for chest radiographic imaging (CXR) for monitoring the disease and preventing further deaths. Several studies have been shown that Deep Learning models can achieve promising results for COVID-19 diagnosis towards the CXR perspective.

View Article and Find Full Text PDF

Unlabelled: The ATHLOS cohort is composed of several harmonized datasets of international groups related to health and aging. As a result, the Healthy Aging index has been constructed based on a selection of variables from 16 individual studies. In this paper, we consider additional variables found in ATHLOS and investigate their utilization for predicting the Healthy Aging index.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with dysfunction of dopaminergic neurons in the brain, lack of dopamine and the formation of abnormal Lewy body protein particles. PD is an idiopathic disease of the nervous system, characterized by motor and nonmotor manifestations without a discrete onset of symptoms until a substantial loss of neurons has already occurred, enabling early diagnosis very challenging. Sensor-based platforms have gained much attention in clinical practice screening various biological signals simultaneously and allowing researchers to quickly receive a huge number of biomarkers for diagnostic and prognostic purposes.

View Article and Find Full Text PDF

We live in the big data era in the biomedical field, where machine learning has a very important contribution to the interpretation of complex biological processes and diseases, since it has the potential to create predictive models from multidimensional data sets. Part of the application of machine learning in biomedical science is to study and model complex cellular systems such as biological networks. In this context, the study of complex diseases, such as Alzheimer's diseases (AD), benefits from established methodologies of network science and machine learning as they offer algorithmic tools and techniques that can address the limitations and challenges of modeling and studying cellular AD-related networks.

View Article and Find Full Text PDF

In the last two decades, the medical sciences have changed their approach to pathogenesis as well as to the diagnosis and treatment of complex human diseases. The main reason for this change is the explosive development of biomedical technology and research, which produces a huge amount of information and data which are generated at an increasing rate. Toward this direction is the pathway analysis, a thriving research area of systems biology tools and methodologies which aim to unravel the inherent complexity of high-throughput biological data produced by the advent of omics technologies.

View Article and Find Full Text PDF

MotivationNeurodegenerative diseases (NDs), including amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, and Huntington's disease, occur as a result of neurodegenerative processes. Thus, it has been increasingly appreciated that many neurodegenerative conditions overlap at multiple levels. However, traditional clinicopathological correlation approaches to better classify a disease have met with limited success.

View Article and Find Full Text PDF

Motivation: In the last years, systems-level network-based approaches have gained ground in the research field of systems biology. These approaches are based on the analysis of high-throughput sequencing studies, which are rapidly increasing year by year. Nowadays, the single-cell RNA-sequencing, an optimized next-generation sequencing (NGS) technology that offers a better understanding of the function of an individual cell in the context of its microenvironment, prevails.

View Article and Find Full Text PDF

In contrast to the insidious and poorly immunogenic human papillomavirus (HPV) infections, vaccination with the HPV virus-like particles (vlps) is non-infectious and stimulates a strong neutralizing-antibody response that protects HPV-naïve vaccinees from viral infection and associated cancers. However, controversy about alleged adverse events following immunization (AEFI) with the vlps have led to extensive reductions in vaccine acceptance, with countries like Japan dropping it altogether. The AEFIs are grouped into chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME).

View Article and Find Full Text PDF

A major rise in the prevalence and impact of Alzheimer's disease (AD) is projected in the coming decades, resulting from increasing life expectancy, thus leading to substantially increased healthcare costs. While brain disfunctions at the time of diagnosis are irreversible, it is widely accepted that AD pathology develops decades before clinical symptoms onset. If incipient processes can be detected early in the disease progression, prospective intervention for preventing or slowing the disease can be designed.

View Article and Find Full Text PDF

In the era of Systems Biology and growing flow of omics experimental data from high throughput techniques, experimentalists are in need of more precise pathway-based tools to unravel the inherent complexity of diseases and biological processes. Subpathway-based approaches are the emerging generation of pathway-based analysis elucidating the biological mechanisms under the perspective of local topologies onto a complex pathway network. Towards this orientation, we developed PerSub, a graph-based algorithm which detects subpathways perturbed by a complex disease.

View Article and Find Full Text PDF