Publications by authors named "Arispe N"

Increasing evidence shows that heat shock proteins (hsp) escape the cytosol gaining access to the extracellular environment, acting as signaling agents. Since the majority of these proteins lack the information necessary for their export via the classical secretory pathway, attention has been focused on alternative releasing mechanisms. Crossing the plasma membrane is a major obstacle to the secretion of a cytosolic protein into the extracellular milieu.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a major contemporary and escalating malady in which amyloid-β (Aβ) peptides are the most likely causative agent. Aβ peptides spontaneously tend to aggregate in extracellular fluids following a progression from a monomeric state, through intermediate forms, ending in amyloid fibers and plaques. It is generally accepted now that the neurotoxic agents leading to cellular death, memory loss, and other AD characteristics are the Aβ intermediate aggregated states.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder leading to dementia caused by advanced neuronal dysfunction and death. The most significant symptoms of AD are observed at late stages of the disease when interventions are most likely too late to ameliorate the condition. Currently, the predominant theory for AD is the "amyloid hypothesis," which states that abnormally increased levels of amyloid β (Aβ) peptides result in the production of a variety of aggregates that are neurotoxic.

View Article and Find Full Text PDF

The cellular response to stress is orchestrated by the expression of a family of proteins termed heat shock proteins (hsp) that are involved in the stabilization of basic cellular processes to preserve cell viability and homeostasis. The bulk of hsp function occurs within the cytosol and subcellular compartments. However, some hsp have also been found outside cells released by an active mechanism independent of cell death.

View Article and Find Full Text PDF

Interaction of the Alzheimer's Aβ peptides with the plasma membrane of cells in culture results in chronic increases in cytosolic [Ca(2+)]. Such increases can cause a variety of secondary effects leading to impaired cell growth or cell degeneration. In this investigation, we made a comprehensive study of the changes in cytosolic [Ca(2+)] in single PC12 cells and human neurons stressed by continuous exposure to a medium containing Aβ42 for several days.

View Article and Find Full Text PDF

Heat shock proteins (hsp) are well recognized for their protein folding activity. Additionally, hsp expression is enhanced during stress conditions to preserve cellular homeostasis. Hsp are also detected outside cells, released by an active mechanism independent of cell death.

View Article and Find Full Text PDF

We performed a fluorescent analysis of the binding of Aβ to the surface membrane of different types of cells lines such as PC12, GT1-7, and ex vivo neurons. Analyses were performed on sorted cells with membrane bound Aβ Competitive binding between Aβ phosphatidyl serine- (PtdSer-) specific binder annexin V and an anti-PtdSer antibody provided compelling data confirming the involvement of PtdSer as one of the surface membrane signal molecules for Aβ. We found that populations of cells that exhibited high surface membrane binding affinity for Aβ also show higher membrane cholesterol levels compared to cells that did not bind Aβ.

View Article and Find Full Text PDF
Article Synopsis
  • Although amyloid beta (Aβ) peptides are crucial in Alzheimer's disease development, the specific molecular mechanisms are still unclear.
  • Aβ peptides can form potentially harmful structures in both watery and lipid environments, possibly generating ion channels that allow calcium ions to pass through membranes.
  • The proposed models suggest that these structures can create large, stable channels in membranes, which may be selective for certain metal ions and can be influenced by various compounds.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers propose that the increase in intracellular calcium seen in cells exposed to the Abeta peptide (linked to Alzheimer's disease) is caused by calcium channels formed by the peptide itself.
  • A peptide called NAHis04 effectively inhibits both the calcium currents induced by Abeta in artificial membranes and the resulting intracellular calcium increase in living cells.
  • Modeling studies suggest that NAHis04 can block Abeta channels by binding to specific sites on the Abeta peptide, leading to significant implications for understanding calcium regulation in Alzheimer's disease.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is a common, chronic neurodegenerative disease that is thought to be caused by the neurotoxic effect of the Amyloid beta peptides (Abeta). We have hypothesized that the intrinsic Abeta calcium channel activity of the oligomeric Abeta polymer may be responsible for the neurotoxic properties of Abeta, and that Abeta channel blockers may be candidate AD therapeutics. As a consequence of a rational search paradigm based on the model structure of the Abeta channel, we have identified two compounds of interest: MRS2481 and an enatiomeric species, MRS2485.

View Article and Find Full Text PDF

The opening of the Alzheimer's Abeta channel permits the flux of calcium into the cell, thus critically disturbing intracellular ion homeostasis. Peptide segments that include the characteristic histidine (His) diad, His(13) and His(14), efficiently block the Abeta channel activity, blocking Abeta cytotoxicity. We hypothesize that the vicinal His-His peptides coordinate with the rings of His in the mouth of the pore, thus blocking the flow of calcium ions through the channel, with consequent blocking of Abeta cytotoxicity.

View Article and Find Full Text PDF

Heat shock proteins (hsps) are intracellular chaperones that play a key role in the recovery from stress. Hsp70, the major stress-induced hsp, has been found in the extracellular medium and is capable of activating immune cells. The mechanism involved in Hsp70 release is controversial because this protein does not present a consensual secretory signal.

View Article and Find Full Text PDF

Digitoxin and other cardiac glycosides are important, centuries-old drugs for treating congestive heart failure. However, the mechanism of action of these compounds is still being elucidated. Calcium is known to potentiate the toxicity of these drugs, and we have hypothesized that digitoxin might mediate calcium entry into cells.

View Article and Find Full Text PDF
Article Synopsis
  • The study identifies a subpopulation of cells that show resistance to Abeta toxicity even after prolonged exposure, similar to changes seen in specific brain regions affected by Alzheimer's disease.
  • Using techniques like flow cytometry, researchers were able to separate and analyze Abeta-sensitive and resistant cell types, revealing that sensitivity is linked to the binding of Abeta to cell membranes.
  • Key cell features such as apoptotic signals, cell size, cell cycle stage, and ATP levels play crucial roles in determining a cell's sensitivity to Abeta, with those showing high binding affinity exhibiting more severe responses like increased calcium activity and cell death.
View Article and Find Full Text PDF

The main pathological features in the Alzheimer's brain are progressive depositions of amyloid protein plaques among nerve cells, and neurofibrillary tangles within the nerve cells. The major components of plaques are Abeta peptides. Numerous reports have provided evidence that Abeta peptides are cytotoxic and may play a role in the pathogenesis of AD.

View Article and Find Full Text PDF

The fact that Alzheimer's beta amyloid (Abeta) peptides forms cation channels in lipid bilayers was discovered during the course of our experiments in the laboratory of "Guayo" Rojas at NIH in Bethesda, Maryland (USA). Recently, we found that the Abeta ion channel could be blocked selectively with small peptides that copy the amino acid sequence of the predicted mouth region of the Abeta channel pore. We now have searched for the essential amino acid residues required for this blocking effect by mutations.

View Article and Find Full Text PDF
Article Synopsis
  • The Alzheimer's beta-amyloid (Abeta) peptide can cause cell death through apoptosis by triggering immediate cellular responses like changes in calcium levels and membrane permeability.
  • The cytotoxic effects of Abeta can last for days after its removal due to the persistent activity of Abeta ion channels in the cell membrane.
  • A newly developed specific peptide, NA4, effectively blocks these Abeta-caused cellular responses, including caspase activation and apoptosis, providing a potential therapeutic target.
View Article and Find Full Text PDF

Heat shock proteins (hsps) are involved in multiple cellular processes during normal and stress conditions, particularly in the folding of polypeptides. A newly recognized property of the members of the Hsp70 family is their ability to interact with lipids, opening ion conductance pathways in artificial membranes, and integrating into natural membranes. The formation of Hsp70 channels in biological membranes and their function is still elusive.

View Article and Find Full Text PDF

To compare both the peptide molecular self-aggregation and the interaction with membrane lipids of the Alzheimer's amyloid beta (Abeta)40, Abeta42 peptides, and the cytotoxic peptides human amylin and prion (106-126) peptides, we applied a liposome aggregation technology. The kinetics of the changes in the optical density (DeltaOD) of liposome suspensions generated by the aggregation of liposomes induced by these peptides, allowed us to comparatively analyze their phospholipid affinity and self-aggregation. The kinetic curves showed an initial nonlinear region where d(DeltaOD)/dt followed first order kinetics corresponding to the binding of the peptides to the membrane of the liposome, a linear region where d(DeltaOD)/dt was constant, corresponding to the interaction between two membrane-bound peptide molecules, and a final slower increasing nonlinear region that corresponds to nucleation or seeding of aggregation.

View Article and Find Full Text PDF

We have proposed that the cytotoxic action of Alzheimer's amyloid beta protein might be initiated by the interaction with the neuronal cell membrane, and subsequent formation of toxic ion channels. Consequently, A beta P toxicity can be explained on the basis of harmful ion fluxes across A beta P channels. The conformation of A beta P in membranes is not known.

View Article and Find Full Text PDF

Cell surface-bound heat shock protein 70 (Hsp70) renders tumor cells more sensitive to the cytolytic attack mediated by natural killer (NK) cells. A 14-amino acid Hsp70 sequence, termed TKD (TKDNNLLGRFELSG, aa450-463) could be identified as the extracellular localized recognition site for NK cells. Here, we show by affinity chromatography that both, full-length Hsp70-protein and Hsp70-peptide TKD, specifically bind a 32-kDa protein derived from NK cell lysates.

View Article and Find Full Text PDF

Heat shock proteins play a major role in the process of protein folding, and they have been termed molecular chaperones. Two members of the Hsp70 family, Hsc70 and Hsp70, have a high degree of sequence homology. But they differ in their expression pattern.

View Article and Find Full Text PDF

Cell degeneration in Alzheimer's disease is mediated by a toxic mechanism that involves interaction of the AbetaP peptide with the plasma membrane of the target cell. We report here that PC12 cells become resistant to the cytotoxic action of AbetaP when incubated in a medium that enriches cholesterol levels of the surface membrane. On the other hand, making cholesterol-deficient membranes by either cholesterol extraction with cyclodextrin or by inhibiting de novo synthesis of cholesterol makes PC12 cells more vulnerable to the action of AbetaP.

View Article and Find Full Text PDF

Amyloid-beta-protein (betaA/4, AbetaP) accumulates in the brains of patients with Alzheimer's disease (AD), regardless of genetic etiology, and is thought to be the toxic principle responsible for neuronal cell death. The varepsilon4 allele of apoE has been linked closely to earlier onset of AD and increased deposition of the amyloid peptide, regardless of the clinical status of AD, while the apoE varepsilon2 allele is generally protective. We have previously hypothesized that the cell target for amyloid peptide might be the apoptotic signal molecule phosphatidylserine (PS).

View Article and Find Full Text PDF

Heat shock proteins are molecular chaperones that participate in different cellular processes, particularly the folding and translocation of polypeptides across membranes. In this regard, members of the Hsp70 family of heat shock proteins have been observed in close proximity to cellular membranes. In this study, the direct interaction between Hsc70, which is constitutively expressed in cells, and lipid membranes was investigated.

View Article and Find Full Text PDF