Publications by authors named "Aris Lalos"

Cyber-physical systems (CPSs) are evolving from individual systems to collectives of systems that collaborate to achieve highly complex goals, realizing a cyber-physical system of systems (CPSoSs) approach. They are heterogeneous systems comprising various autonomous CPSs, each with unique performance capabilities, priorities, and pursued goals. In practice, there are significant challenges in the applicability and usability of CPSoSs that need to be addressed.

View Article and Find Full Text PDF

Recently, spectral methods have been extensively used in the processing of 3D meshes. They usually take advantage of some unique properties that the eigenvalues and the eigenvectors of the decomposed Laplacian matrix have. However, despite their superior behavior and performance, they suffer from computational complexity, especially while the number of vertices of the model increases.

View Article and Find Full Text PDF

Effective management of chronic constrictive pulmonary conditions lies in proper and timely administration of medication. As a series of studies indicates, medication adherence can effectively be monitored by successfully identifying actions performed by patients during inhaler usage. This study focuses on the recognition of inhaler audio events during usage of pressurized metered dose inhalers (pMDI).

View Article and Find Full Text PDF

The increasing interest for reliable generation of large scale scenes and objects has facilitated several real-time applications. Although the resolution of the new generation geometry scanners are constantly improving, the output models, are inevitably noisy, requiring sophisticated approaches that remove noise while preserving sharp features. Moreover, we no longer deal exclusively with individual shapes, but with entire scenes resulting in a sequence of 3D surfaces that are affected by noise with different characteristics due to variable environmental factors (e.

View Article and Find Full Text PDF

Background: Chronic obstructive pulmonary disease (COPD) and asthma are considered as the two most widespread obstructive lung diseases, whereas they affect more than 500 million people worldwide. Unfortunately, the requirement for detailed geometric models of the lungs in combination with the increased computational resources needed for the simulation of the breathing did not allow great progress to be made in the past for the better understanding of inflammatory diseases of the airways through detailed modelling approaches. In this context, computational fluid dynamics (CFD) simulations accompanied by fluid particle tracing (FPT) analysis of the inhaled ambient particles are deemed critical for lung function assessment.

View Article and Find Full Text PDF

Life-long chronic inflammatory diseases of the airways, such as asthma and Chronic Obstructive Pulmonary Disease, are very common worldwide, affecting people of all ages, race and gender. One of the most important aspects for the effective management of asthma is medication adherence which is defined as the extent to which patients follow their prescribed action plan and use their inhaler correctly. Wireless telemonitoring of the medication adherence can facilitate early diagnosis and management of these diseases through the use of an accurate and energy efficient mHealth system.

View Article and Find Full Text PDF

In the new era of connectivity, marked by the explosive number of wireless electronic devices and the need for smart and pervasive applications, Machine-to-Machine (M2M) communications are an emerging technology that enables the seamless device interconnection without the need of human interaction. The use of M2M technology can bring to life a wide range of mHealth applications, with considerable benefits for both patients and healthcare providers. Many technological challenges have to be met, however, to ensure the widespread adoption of mHealth solutions in the future.

View Article and Find Full Text PDF