Publications by authors named "Arinze I"

Unlabelled: Scorpion Sting is a common occurrence in the tropics caused by scorpion envenomation on unsuspecting victims. The sting causes severe pain and may be much more fatal depending on the age and size of the patient and the scorpion specie as well as other factors. Effective treatment is needed specially to alleviate pain.

View Article and Find Full Text PDF

Background: Ocular perfusion pressure (OPP) has been suggested as a possible risk factor for the development and progression of primary open angle glaucoma (POAG).

Aim: To determine the distribution of OPP and its relationship with intraocular pressure (IOP) in Nigerian patients with POAG.

Patients And Methods: : A descriptive and comparative survey was adopted.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the impact of COVID-19 on the antibiogram patterns of a rural hospital, focusing on changes in bacterial sensitivity and antimicrobial susceptibility over a five-year period.
  • The research highlighted significant shifts in the susceptibility to various antibiotics, particularly noting an increase in susceptibility to nitrofurantoin and imipenem, while gentamicin sensitivity decreased.
  • Findings indicate that the pandemics led to changes in hospital policies and patient management, emphasizing the importance of understanding how infectious disease patterns can affect healthcare outcomes.
View Article and Find Full Text PDF

Background/aims: Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that binds to the antioxidant response element(s) (ARE) in target gene promoters, enabling oxidatively stressed cells to respond in order to restore redox homeostasis. Post-translational modifications (PTMs) that mediate activation of Nrf2, in the cytosol and its release from Keap1, have been extensively studied but PTMs that impact its biology after activation are beginning to emerge. In this regard, PTMs like acetylation, phosphorylation, ubiquitination and sumoylation contribute towards the Nrf2 subcellular localization, and its transactivation function.

View Article and Find Full Text PDF

The orbitofrontal cortex (OFC) plays a fundamental role in motivated behavior and decision-making. In humans, OFC structure and function is significantly disrupted in drug using and dependent individuals, including those exhibiting chronic alcohol use and alcoholism. In animal models, the OFC has been shown to significantly influence the seeking of non-alcohol drugs of abuse.

View Article and Find Full Text PDF

Background/aims: Nuclear factor erythroid 2-related factor 2 (Nrf2) is a basic leucine-zipper transcription factor essential for cellular responses to oxidative stress. Degradation of Nrf2 in the cytoplasm, mediated by Keap1-Cullin3/RING box1 (Cul3-Rbx1) E3 ubiquitin ligase and the proteasome, is considered the primary pathway controlling the cellular abundance of Nrf2. Although the nucleus has been implicated in the degradation of Nrf2, little information is available on how this compartment participates in degrading Nrf2.

View Article and Find Full Text PDF

Background/aims: The transcription factor Nrf2 is a master regulator of the antioxidant defense system, protecting cells from oxidative damage. We previously reported that the SUMO-targeted E3 ubiquitin ligase (STUbL), RING finger protein 4 (RNF4) accelerated the degradation rate of Nrf2 in promyelocytic leukemia-nuclear body (PML-NB)-enriched fractions and decreased Nrf2-mediated gene transcription. The mechanisms that regulate Nrf2 nuclear levels are poorly understood.

View Article and Find Full Text PDF

The G-protein Gαi2 mediates signaling in a variety of processes. Induced expression of Gαi2 by butyrate and various transcription factors has been established, but transcriptional suppression has not previously been explored. Using HepG2 and K562 cells in culture, we show here that whereas both C/EBPα and C/EBPβ induced transcription from the Gαi2 gene promoter, C/EBPα, but not C/EBPβ, inhibited butyrate-induced Gαi2 expression.

View Article and Find Full Text PDF

Ubiquitylation of Nrf2 by the Keap1-Cullin3/RING box1 (Cul3-Rbx1) E3 ubiquitin ligase complex targets Nrf2 for proteasomal degradation in the cytoplasm and is an extensively studied mechanism for regulating the cellular level of Nrf2. Although mechanistic details are lacking, reports abound that Nrf2 can also be degraded in the nucleus. Here, we demonstrate that Nrf2 is a target for sumoylation by both SUMO-1 and SUMO-2.

View Article and Find Full Text PDF

Activation of Nrf2 by covalent modifications that release it from its inhibitor protein Keap1 has been extensively documented. In contrast, covalent modifications that may regulate its action after its release from Keap1 have received little attention. Here we show that CREB-binding protein induced acetylation of Nrf2, increased binding of Nrf2 to its cognate response element in a target gene promoter, and increased Nrf2-dependent transcription from target gene promoters.

View Article and Find Full Text PDF

Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the transcriptional response of cells to oxidative stress and is translocated into the nucleus following, or concomitant with, its activation by electrophiles or reactive oxygen species. The mechanism of its translocation into the nucleus is not entirely elucidated. Here we have identified two novel nuclear localization signal (NLS) motifs in murine Nrf2, one located near the N-terminal region (amino acid residues 42-53) and the other (residues 587-593) located near the C-terminal region.

View Article and Find Full Text PDF

The Koletsky (SHROB) strain of rats is spontaneously hypertensive and displays insulin resistance, hyperglucagonemia and hypertriglyceridemia but is normoglycemic under fasting conditions. The aim of this study was to unravel the pattern of expression of genes encoding key regulatory enzymes involved in carbohydrate metabolism in the liver and kidney that may be impacted in this strain. We found that SHROB animals have decreased beta-adrenergic receptor density and, consequently, blunted increases in cAMP levels in response to beta-adrenergic agonists.

View Article and Find Full Text PDF

Fatty acids and glucose are strong modulators of the expression of glucose-6-phosphatase (Glc-6-Pase), an enzyme that plays a key role in glucose homeostasis. PUFA inhibit, whereas SFA and monounsaturated fatty acids induce the expression of the Glc-6-Pase gene. Palmitate and oleate are the most abundant fatty acid species in circulation during food deprivation in mammals.

View Article and Find Full Text PDF

Valproic acid (VPA) is a widely used anticonvulsive agent that has profound antiproliferative effects in many cell types, as well as inductive effects on a number of genes. The mechanism of its gene-inducing effect has been reported to involve transcription factors, Sp1 and activator protein-1. Using two well-characterized antioxidant response element (ARE)-driven gene promoters, i.

View Article and Find Full Text PDF

Some metabolic processes are readily understood because they are circumscribed in metabolic pathways that have clearly identifiable beginning points, end products, and other features. Other metabolic pathways that do not appear to be straightforward pose difficulties for students. One such metabolic process, the purine nucleotide cycle, is discussed here.

View Article and Find Full Text PDF

Very little is known regarding molecular mechanism(s) underlying transcriptional regulation of any G-protein gene despite the importance of G-protein expression in modulating cellular processes. Here we show that phorbol myristate acetate (PMA) and tert-butylhydroquinone (tBHQ), which induce oxidative stress in cells, up-regulate transcription of Galpha(i2) in K562 cells. Redox-sensing chemicals abrogated this transcriptional effect.

View Article and Find Full Text PDF

Mechanisms underlying dietary nutrient regulation of glucose-6-phosphatase (Glc-6-Pase) gene expression are not well understood. Here we investigated the effects of short-chain fatty acids on the expression of this gene in primary cultures of rat hepatocytes and H4IIE hepatoma cells. Propionate, butyrate, valerate, and caproate induced severalfold increases in the expression of Glc-6-Pase mRNA.

View Article and Find Full Text PDF

Valproic acid-induced gene expression has been attributed to the DNA-binding activity of the transcription factor activator protein 1 (AP-1). Using K562 cells, we have studied valproic acid-induced transcription from the human Galpha(i2) gene promoter, which lacks AP-1-binding motifs. We find that valproic acid-induced expression of Galpha(i2) is inhibited by mithramycin A, a compound that interferes with Sp1 binding to GC boxes in DNA.

View Article and Find Full Text PDF

Sodium butyrate, an erythroid differentiation inducer and a histone deacetylase inhibitor, increases G alpha(i2) levels in differentiating K562 cells. Here we show that sodium butyrate induces G alpha(i2) gene transcription via sequences at -50/-36 and -92/-85 in the G alpha(i2) gene promoter. Both sequences contain core sequence motif for Sp1 binding; electrophoretic mobility shift as well as supershift assays confirmed binding to Sp1.

View Article and Find Full Text PDF

Fifty percent of the mice homozygous for a deletion in the gene for CCAAT/enhancer-binding protein beta (C/EBP beta-/- mice; B phenotype) die within 1 to 2 h after birth of hypoglycemia. They do not mobilize their hepatic glycogen or induce the cytosolic form of phosphoenolpyruvate carboxykinase (PEPCK). Administration of cAMP resulted in mobilization of glycogen, induction of PEPCK mRNA, and a normal blood glucose; these mice survived beyond 2 h postpartum.

View Article and Find Full Text PDF

The chronic myelogenous leukaemia cell line K562 can be triggered in culture to differentiate along the erythrocytic pathway in response to a variety of stimulatory agents. In the presence of sodium butyrate, these cells differentiate to erythroblasts and acquire the capability to synthesize haemoglobin. We used this cell system to study alterations in the levels of several G-protein subunits during the cell differentiation programme and to assess the involvement of G(i)alpha2 in this process.

View Article and Find Full Text PDF

Among various G-protein subunits identified in atrial and ventricular membranes from newborn and adult rabbits, the most remarkable developmental and tissue-specific differences were observed in the amounts of the alpha-subunit of Go (Go alpha) and the beta-subunit (G beta). Go alpha was abundant in atrial membranes especially from newborn rabbits but was barely detectable in ventricles. In contrast, G beta was present in both atrial and ventricular membranes.

View Article and Find Full Text PDF

The mRNA levels for Gs alpha and G beta in liver from various age groups of rabbits were assessed by Northern and dot-blot hybridization assays using cDNA and oligonucleotide probes. The mRNA levels for both Gs alpha and G beta exhibited a transient 30-35% decrease at 3-6 h after birth, followed by a 3- to 3.5-fold increase which peaked at 2 days after birth, then gradually declined to adult levels at 4-6 weeks.

View Article and Find Full Text PDF

The effect of dexamethasone administration in vivo on the steady-state levels of G-protein subunits in liver of neonatal rabbits was investigated using specific antibodies to each subunit as well as bacterial toxin-mediated ADP-ribosylation assays. Parallel measurements were also made of the activity of adenylyl cyclase, as influenced by a variety of activators. Dexamethasone administration modulated the levels of G-protein subunits in liver in an age-dependent and subunit-specific manner but not in 24-h-old newborns.

View Article and Find Full Text PDF

Ontogeny of trimeric GTP-binding regulatory proteins (G-proteins) and their subunits in rabbit liver during neonatal development was studied, by using bacterial-toxin-catalysed ADP-ribosylation of membrane proteins, immunoblot analysis to quantify the alpha-subunit (alpha s and alpha i) of stimulatory (Gs) and inhibitory (Gi) G-protein and the beta-subunit, and reconstitution assay with cyc- membranes (from Gs-deficient variant of S49 lymphoma cell) to measure Gs activity. Under optimal conditions of ADP-ribosylation, little cholera-toxin substrate (alpha s) was detected in membranes from liver of neonatal animals up to 24 h of age. Thereafter ribosylatable alpha s proteins, i.

View Article and Find Full Text PDF