The demand for high-quality and sustainable protein sources is on the rise. Lupin is an emerging plant-based source of protein with health-enhancing properties; however, the allergenic potential of lupins limits their widespread adoption in food products. A combination of discovery and targeted quantitative proteome measurements was used to investigate the impact of solid-state fermentation induced by Rhizopus oligosporus on the proteome composition and allergenic protein abundances of white lupin seed.
View Article and Find Full Text PDFLupin seeds have an excellent nutritional profile, including a high proportion of protein and dietary fiber. These qualities make lupin seeds an ideal candidate to help meet the growing global demand for complementary sources of protein. Of consequence to this application, there are nutritional and antinutritional properties assigned to the major lupin seed storage proteins-referred to as α-, β-, δ- and γ-conglutins The variation in the abundance of these protein families can impact the nutritional and bioactive properties of different lupin varieties.
View Article and Find Full Text PDFLupin is slated as a potential contributor towards future food security. Lupin possesses several nutritional and nutraceutical attributes, many linked to seed proteins. For in-depth characterisation of the lupin proteome, liquid chromatography-tandem mass spectrometry was used to evaluate four protein extraction procedures.
View Article and Find Full Text PDF