Publications by authors named "Arindam Bala"

Adapting electronics to perfectly conform to nonplanar and rough surfaces, such as human skin, is a challenging task, which could open up new applications in fields of high economic and scientific interest, ranging from health to robotics, human-machine interface, and Internet of Things. The key to success lies in defining a technology that can lead to ultrathin devices, exploiting ultimately thin materials, with high mechanical flexibility and excellent electrical properties. Here, we report a hybrid approach for the development of high-performance, ultrathin and conformable electronic devices, based on the integration of semiconducting transition metal dichalcogenides, i.

View Article and Find Full Text PDF

Olfaction, a primal and effective sense, profoundly impacts our emotions and instincts. This sensory system plays a crucial role in detecting volatile organic compounds (VOCs) and realizing the chemical environment. Animals possess superior olfactory systems compared to humans.

View Article and Find Full Text PDF

The unique electrical and optical properties of transition metal dichalcogenides (TMDs) make them attractive nanomaterials for optoelectronic applications, especially optical sensors. However, the optical characteristics of these materials are dependent on the number of layers. Monolayer TMDs have a direct bandgap that provides higher photoresponsivity compared to multilayer TMDs with an indirect bandgap.

View Article and Find Full Text PDF

Transition-metal dichalcogenides (TMDs) in flexible technology can offer large-area scalability and high-density integration with a low power consumption. However, incorporating large-area TMDs in a flexible platform is lacking in state-of-the-art data storage technology owing to the high process temperature of TMDs. Low-temperature growth of TMDs can bridge mass production in flexible technology and reduce the complexity of the transferring process.

View Article and Find Full Text PDF

2D transition-metal dichalcogenides (TMDs) have been successfully developed as novel ubiquitous optoelectronics owing to their excellent electrical and optical characteristics. However, active-matrix image sensors based on TMDs have limitations owing to the difficulty of fabricating large-area integrated circuitry and achieving high optical sensitivity. Herein, a large-area uniform, highly sensitive, and robust image sensor matrix with active pixels consisting of nanoporous molybdenum disulfide (MoS ) phototransistors and indium-gallium-zinc oxide (IGZO) switching transistors is reported.

View Article and Find Full Text PDF

Two-dimensional (2D) materials are favorable candidates for resistive memories in high-density nanoelectronics owing to their ultrathin scaling and controllable interfacial characteristics. However, high processing temperatures and difficulties in mechanical transfer are intriguing challenges associated with their implementation in large areas with crossbar architecture. A high processing temperature may damage the electrical functionalities of the bottom electrode, and mechanical transfer of 2D materials may introduce undesirable microscopic defects and macroscopic discontinuities.

View Article and Find Full Text PDF

The technological ability to detect a wide spectrum range of illuminated visible-to-NIR is substantially improved for an amorphous metal oxide semiconductor, indium gallium zinc oxide (IGZO), without employing an additional photoabsorber. The fundamentally tuned morphology via structural engineering results in the creation of nanopores throughout the entire thickness of ∼30 nm. See-through nanopores have edge functionalization with vacancies, which leads to a large density of substates near the conduction band minima and valence band maxima.

View Article and Find Full Text PDF

Various large-area growth methods for two-dimensional transition metal dichalcogenides have been developed recently for future electronic and photonic applications. However, they have not yet been employed for synthesizing active pixel image sensors. Here, we report on an active pixel image sensor array with a bilayer MoS film prepared via a two-step large-area growth method.

View Article and Find Full Text PDF