Publications by authors named "Arina Yazawa"

Potentially druggable mechanisms underlying synaptic deficits seen in Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are under intense interrogations. In addition to defective synaptic vesicle trafficking, cytoskeletal disruption, autophagic perturbation, and neuroinflammation, hyperphosphorylation of microtubule-associated protein collapsin response mediator protein 2 (CRMP2, also known as DPYSL2) is newly determined to correlate with synaptic deficits in human DLB. The small molecule experimental therapeutic, lanthionine ketimine-5-ethyl ester (LKE), appears to interact with CRMP2 in a host of neurodegenerative mouse models, normalizing its phosphorylation level while promoting healthful autophagy in cell culture models and suppressing the proinflammatory phenotype of activated microglia.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). Levodopa (L-Dopa), the current main treatment for PD, reduces PD symptoms by partially replacing dopamine, but it does not slow neurodegeneration. Recent studies have evidenced that neuroinflammatory processes contribute to the degeneration of dopaminergic neurons in the SNc under cytopathic conditions, while other lines of inquiry have implicated phosphorylation of collapsin response mediator protein 2 (CRMP2) as a causal factor in axonal retraction after neural injury.

View Article and Find Full Text PDF