Assessing the levels of serum IgG antibodies is widely used to measure immunity to influenza and the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) after natural infection or vaccination with specific vaccines, as well as to study immune responses to these viruses in animal models. For safety reasons, sometimes serum specimens collected from infected individuals are subjected to heat inactivation at 56 °C to reduce the risk of infecting personnel during serological studies. However, this procedure may affect the level of virus-specific antibodies, making the results of antibody immunoassays uninterpretable.
View Article and Find Full Text PDFCurrent seasonal influenza vaccines have suboptimal effectiveness, especially in seasons dominated by viruses that do not match the vaccine. Therefore, finding new approaches to improve the immunogenicity and efficacy of traditional influenza vaccines is of high priority for public health. Licensed live attenuated influenza vaccine (LAIV) is a promising platform for designing broadly protective vaccines due to its ability to induce cross-reactive T-cell immunity.
View Article and Find Full Text PDFBackground: New coronavirus SARS-CoV-2, a causative agent of the COVID-19 pandemic, has been circulating among humans since November 2019. Multiple studies have assessed the qualitative and quantitative characteristics of virus-specific immunity in COVID-19 convalescents, however, some aspects of the development of memory T-cell responses after natural SARS-CoV-2 infection remain uncovered.
Methods: In most of published studies T-cell immunity to the new coronavirus is assessed using peptides corresponding to SARS-CoV-1 or SARS-CoV-2 T-cell epitopes, or with peptide pools covering various parts of the viral proteins.