Publications by authors named "Arina Fedorova"

Early changes in lung tissue following ionizing radiation (IR) initiate processes that may lead to either regeneration or fibrosis. Intercellular junction proteins play a crucial role in the organization and function of epithelial tissues, both under normal conditions and after injuries. Alterations in the expression and localization of these proteins can influence the fate of epithelial cells.

View Article and Find Full Text PDF

Ionizing radiation (IR) causes disturbances in the functions of the gastrointestinal tract. Given the therapeutic potential of ouabain, a specific ligand of the Na,K-ATPase, we tested its ability to protect against IR-induced disturbances in the barrier and transport properties of the jejunum and colon of rats. Male Wistar rats were subjected to 6-day intraperitoneal injections of vehicle or ouabain (1 µg/kg/day).

View Article and Find Full Text PDF

Endothelial cells in brain capillaries are crucial for the function of the blood-brain barrier (BBB), and members of the tight junction protein family of claudins are regarded to be primarily responsible for barrier properties. Thus, the analysis of bioactive substances that can affect the BBB's permeability is of great importance and may be useful for the development of new therapeutic strategies for brain pathologies. In our study, we tested the hypothesis that the application of the glucocorticoid prednisolone affects the murine blood-brain barrier in vivo.

View Article and Find Full Text PDF

The damaging effect of ionizing radiation (IR) exposure results in the disturbance of the gut natural barrier, followed by the development of severe gastrointestinal injury. However, the dose and application segment are known to determine the effects of IR. In this study, we demonstrated the dose- and segment-specificity of tight junction (TJ) alteration in IR-induced gastrointestinal injury in rats.

View Article and Find Full Text PDF

Recently it has been reported that the tumor adjacent colon tissues of 1,2-dymethylhydrazine induced (DMH)-rats revealed a high paracellular permeability. We hypothesized that the changes might be induced by cytokines. Colorectal cancer is accompanied by an increase in tumor necrosis factor alpha (TNFα) and interleukin 10 (IL10) that exert opposite regulatory effects on barrier properties of the colon, which is characterized by morphological and functional segmental heterogeneity.

View Article and Find Full Text PDF

The Na,K-ATPase plays an important role in adaptation to hypoxia. Prolonged hypoxia results in loss of skeletal muscle mass, structure, and performance. However, hypoxic preconditioning is known to protect against a variety of functional impairments.

View Article and Find Full Text PDF

The damaging effect of ionizing radiation (IR) on skeletal muscle Na,K-ATPase is an open field of research. Considering a therapeutic potential of ouabain, a specific ligand of the Na,K-ATPase, we tested its ability to protect against the IR-induced disturbances of Na,K-ATPase function in rat diaphragm muscle that co-expresses the α1 and α2 isozymes of this protein. Male Wistar rats ( = 26) were subjected to 6-day injections of vehicle (0.

View Article and Find Full Text PDF

Ionizing radiation causes dramatic change in the transport and barrier functions of the intestine. The degree of radiation damage rate depends primarily on the absorbed dose and post-irradiation time. Variety of experimental protocols providing different time points and doses exist, with the lack of a common approach.

View Article and Find Full Text PDF

The ability of exogenous low ouabain concentrations to affect claudin expression and therefore epithelial barrier properties was demonstrated previously in cultured cell studies. We hypothesized that chronic elevation of circulating ouabain in vivo can affect the expression of claudins and tight junction permeability in different tissues. We tested this hypothesis in rats intraperitoneally injected with ouabain (1 μg/kg) for 4 days.

View Article and Find Full Text PDF

Cholera toxin is commonly known to induce chloride secretion of the intestine. In recent years, effects on epithelial barrier function have been reported, indicating synergistic co-regulation of transporters and tight junction proteins. Our current study focused on the analysis of cholera toxin effects on transepithelial resistance and on tight junction proteins, the latter known as structural correlates of barrier function.

View Article and Find Full Text PDF