When judging the quality of a computational system for a pathological screening task, several factors seem to be important, like sensitivity, specificity, accuracy, etc. With machine learning based approaches showing promise in the multi-label paradigm, they are being widely adopted to diagnostics and digital therapeutics. Metrics are usually borrowed from machine learning literature, and the current consensus is to report results on a diverse set of metrics.
View Article and Find Full Text PDFTime series sensor data classification tasks often suffer from training data scarcity issue due to the expenses associated with the expert-intervened annotation efforts. For example, Electrocardiogram (ECG) data classification for cardio-vascular disease (CVD) detection requires expensive labeling procedures with the help of cardiologists. Current state-of-the-art algorithms like deep learning models have shown outstanding performance under the general requirement of availability of large set of training examples.
View Article and Find Full Text PDFAtrial Fibrillation (AF) is a kind of arrhythmia, which is a major morbidity factor, and AF can lead to stroke, heart failure and other cardiovascular complications. Electrocardiogram (ECG) is the basic marker to test the condition of heart and it can effectively detect AF condition. Single lead ECG has the practical advantage for being small form factor and it is easy to deploy.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Electrocardiogram (ECG) is one of the fundamental markers to detect different cardiovascular diseases (CVDs). Owing to the widespread availability of ECG sensors (single lead) as well as smartwatches with ECG recording capability, ECG classification using wearable devices to detect different CVDs has become a basic requirement for a smart healthcare ecosystem. In this paper, we propose a novel method of model compression with robust detection capability for CVDs from ECG signals such that the sophisticated and effective baseline deep neural network model can be optimized for the resource constrained micro-controller platform suitable for wearable devices while minimizing the performance loss.
View Article and Find Full Text PDFRemote and automated healthcare management has shown the prospective to significantly impact the future of human prognosis rate. Internet of Things (IoT) enables the development and implementation ecosystem to cater the need of large number of relevant stakeholders. In this paper, we consider the cardiac health management system to demonstrate that data-driven techniques produce substantial performance merits in terms of clinical efficacy by employing robust machine learning methods with relevant and selected signal processing features.
View Article and Find Full Text PDFObjective: Atrial fibrillation (AF) and other types of abnormal heart rhythm are related to multiple fatal cardiovascular diseases that affect the quality of human life. Hence the development of an automated robust method that can reliably detect AF, in addition to other non-sinus and sinus rhythms, would be a valuable addition to medicine. The present study focuses on developing an algorithm for the classification of short, single-lead electrocardiogram (ECG) recordings into normal, AF, other abnormal rhythms and noisy classes.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2018
We present a system to analyze patterns inside pulsatile signals and discover repetitions inside signals. We measure dominance of the repetitions using morphology and discrete nature of the signals by exploiting machine learning and information theoretic concepts. Patterns are represented as combinations of the basic features and derived features.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2017
Phonocardiogram (PCG) records heart sound and murmurs, which contains significant information of cardiac health. Analysis of PCG signal has the potential to detect abnormal cardiac condition. However, the presence of noise and motion artifacts in PCG hinders the accuracy of clinical event detection.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
We propose here derivation algorithms for physiological parameters like beat start point, systolic peak, pulse duration, peak-to-peak distance related to heart rate, dicrotic minima, diastolic peak from Photoplethysmogram (PPG) signals robustly. Our methods are based on unsupervised learning mainly following morphology as well as discrete nature of the signal. Statistical learning has been used as a special aid to infer most probable feature values mainly to cope up with presence of noise, which is assumed to be insignificant compared to signal values at each investigation window.
View Article and Find Full Text PDF