Angew Chem Int Ed Engl
December 2024
The tetrahydroquinoline (THQ) framework is commonly found in natural products and pharmaceutically relevant molecules. Apart from using transition metal catalysts and chiral phosphoric acids, the chiral 2-substituted 1,2,3,4-THQs are synthesized using amine oxidase biocatalysts. However, the use of imine reductases (IREDs) in their asymmetric synthesis remained unexplored.
View Article and Find Full Text PDFMeasurement of time evolution of fluorescence of a probe solute has been a quintessential technique to quantify how dipolar solvent molecules dynamically minimize the free energy of an electronically excited probe. During such solvation dynamics in bulk liquids, a substantial part of relaxation was shown to complete within sub-100 fs from time-gated fluorescence measurements, as also predicted by molecular dynamics simulation studies. However, equivalent quantification of solvation timescales by femtosecond pump-probe and broadband fluorescence measurements revealed an exponential nature of this initial relaxation having quite different timescales.
View Article and Find Full Text PDFThe versatile and tunable ligand-exchange dynamics in ruthenium(II)-polypyridyl complexes imposed by the modulation of the steric and electronic effects of the coordinated ligands provide an unlimited scope for developing phototherapeutic agents. The photorelease of a bidentate ligand from the Ru-center is better suited for potent Ru(II)-based photocytotoxic agents with two available labile sites for cross-linking with biological targets augmented with possible phototriggered O generation. Herein, we introduced a phenyl-terpyridine (ptpy) ligand in the octahedral Ru(II) core of [Ru(ptpy)(L-L)Cl] to induce structural distortion for the possible photorelease of electronically distinct bidentate ligands (L-L).
View Article and Find Full Text PDFFood Supply Chains (FSCs) have become increasingly complex with the average distance between producers and consumers rising considerably in the past two decades. Consequently, FSCs are a major source of carbon emissions and reducing transportation costs a major challenge for businesses. To address this, we present a mathematical model to promote the three core dimensions of sustainability (economic, environmental, and social), based on the Mixed-Integer Linear Programming (MILP) method.
View Article and Find Full Text PDFRobust segmentation of large and complex conjoined tree structures in 3-D is a major challenge in computer vision. This is particularly true in computational biology, where we often encounter large data structures in size, but few in number, which poses a hard problem for learning algorithms. We show that merging multiscale opening with geodesic path propagation, can shed new light on this classic machine vision challenge, while circumventing the learning issue by developing an unsupervised visual geometry approach (digital topology/morphometry).
View Article and Find Full Text PDFLarge Stokes shift red fluorescent proteins (LSS-RFPs) are genetically encoded and exhibit a significant difference of a few hundreds of nanometers between their excitation and emission peak maxima (i.e., the Stokes shift).
View Article and Find Full Text PDFSymmetry-breaking charge separation (SB-CS) has recently evolved as an emerging concept offering its potential to the latest generation of organic photovoltaics. However there are several concerns that need to be addressed to reach the state-of-the-art in SB-CS chemistry, for instance, the desirable molecular geometry, interchromophoric distance and extent of electronic coupling. To shed light on those features, it is reported herein, that -functionalized perylene monoimide (PMI) constituted regioisomeric dimer and trimer derivatives with varied molecular twisting and electronic conjugation have been synthesized.
View Article and Find Full Text PDFRich in antioxidants with a variety of flavones and anthocyanins, passionflower/fruit has been extensively used in food, beverage, medicinal, and natural dyes industries. The individual components present in passionflower are identified by extracting them in methanol, partitioning them between ethyl acetate and aqueous layers, and recording their ESI mass spectrometric data. The steady-state absorption and fluorescence spectra of the extract in methanol and dimethyl sulfoxide are recorded and the lifetime of the fluorescing species is reported.
View Article and Find Full Text PDFIn a quest to track down the origin of coherent vibrational motions observed in femtosecond pump-probe transients, whether they arise from ground/excited electronic state of solute or are contributed by the solvent, we demonstrate a method for extricating vibrations under resonant and non-resonant impulsive excitations using a diatomic solute in condensed phase (iodine in carbon tetrachloride) with aid of spectral dispersion of the chirped broadband probe. Most importantly, we show how a sum over intensities for a select region of detection wavelengths and Fourier transform of data over select temporal window untwine contributions from vibrational modes of different origins. Thus, in a single pump-probe experiment, vibrational features specific to solute as well as solvent are disentangled that are otherwise spectrally overlapping and are non-separable in conventional (spontaneous/stimulated) Raman spectroscopy employing narrowband excitation.
View Article and Find Full Text PDFElucidating the origin of large Stokes shift (LSS) in certain fluorescent proteins absorbing in blue/blue-green and emitting in red/far-red has been quite illusive. Using a combination of spectroscopic measurements, corroborated by theoretical calculations, the presence of four distinct forms of the chromophore of the red fluorescent protein mKeima is confirmed, two of which are found to be emissive: a feeble bluish-green fluorescence (∼520 nm), which is enhanced appreciably in a low pH or deuterated medium but significantly at cryogenic temperatures, and a strong emission in red (∼615 nm). Using femtosecond transient absorption spectroscopy, the trans-protonated form is found to isomerize within hundreds of femtoseconds to the cis-protonated form, which further yields the cis-deprotonated form within picoseconds followed by structural reorganization of the local environment of the chromophore.
View Article and Find Full Text PDFUsing wide-field and point detection modalities, we show how optical trapping dynamics under femtosecond pulsed excitation can be explored by complementing detection of two-photon fluorescence with backscatter. Radial trajectories of trapped particles are mapped from correlated/anti-correlated fluctuations in backscatter pattern whereas temporal evolution of two-photon fluorescence is used to mark the onset of trapping involving multiple particles. Simultaneous confocal detection of backscatter and two-photon fluorescence estimates axial trap stiffness, delineating short-time trapping dynamics.
View Article and Find Full Text PDFWe report a large Stokes shift and broad emission band in a Mn-based organic-inorganic hybrid halide, (Guanidinium)MnBr [GuMBr], consisting of trimeric units of distorted MnBr octahedra representing a zero-dimensional compound with a liquid like crystalline lattice. Analysis of the photoluminescence (PL) line width and Raman spectra reveals the effects of electron-phonon coupling, suggestive of the formation of Frenkel-like bound excitons. These bound excitons, regarded as the self-trapped excitons (STEs), account for the large Stokes shift and broad emission band.
View Article and Find Full Text PDFUsing dipole approximation, a comparative study of trapping force/potential on different types of dielectric nanoparticles is presented. The trapping force for multilayered nanoparticles, core-shell-shell type nanoparticles, is found to be enhanced compared with both core-only type and core-shell type nanoparticles. It is shown that an appropriate choice of material and thickness of the middle layer results in tuning the polarizability, thereby playing a vital role in determining the trapping efficiency for core-shell-shell type nanoparticles.
View Article and Find Full Text PDFHerein, a one-pot bienzymatic cascade containing an ene and a naphthol reductase is developed. It is applied for the synthesis of (+)-(3,4)-teratosphaerone B, its non-natural regioisomer in both - and -forms and (+)-xylarenone by the reduction of chemically synthesized naphthoquinone precursors in high yields (76-92%) and excellent ee (>99%). This work implies similar biosynthetic steps in the formation of the synthesized natural products.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
Brain tumor segmentation plays a key role in tumor diagnosis and surgical planning. In this paper, we propose a solution to the 3D brain tumor segmentation problem using deep learning and graph cut from the MRI data. In particular, the probability maps of a voxel to belong to the object (tumor) and background classes from the UNet are used to improve the energy function of the graph cut.
View Article and Find Full Text PDFSinglet fission (SF) is a phenomenon for the generation of a pair of triplet excitons from anexcited molecule in singlet electronic state interacting with another adjacent molecule in its ground electronic state. By increasing the effective number of charge carriers and reducing thermal dissipation of excess energy, SF is promised to enhance light-harvesting efficiency for photovoltaic applications. While SF has been extensively studied in thin films and crystals, the same has not been explored much within a confined medium.
View Article and Find Full Text PDFRecent theoretical and experimental studies have shed light on how laser trapping dynamics under femtosecond pulsed excitation are fine-tuned by optical and thermal nonlinearities. Here, we present experimental results of trapping of single and multiple polystyrene beads (of 1 μm diameter). We show how integration and synchronization of bright-field video microscopy with confocal detection of backscatter provide both spatial and temporal resolution required to capture intricate details of nonlinear trapping dynamics.
View Article and Find Full Text PDFThe usefulness of a chirped broadband probe and spectral dispersion to obtain Raman spectra under nonresonant/resonant impulsive excitation is revisited. A general methodology is presented that inherently takes care of phasing the time-domain low-frequency oscillations without probe pulse compression and retrieves the absolute phase of the oscillations. As test beds, neat solvents (CCl, CHCl, and CHCl) are used.
View Article and Find Full Text PDFPlanar carbazole based hexaphyrin-like macrocycles with bis-coordinating cores and box-shaped cyclic BODIPYs were synthesized. Solution and solid-state structure analysis of the free macrocycles indicates an inversion of two pyrrole rings, resulting in a two-dipyrrin-like environment. The BF complexes show large Stokes shifts and exhibit excitonic coupling, fine-tuned by the -substituents.
View Article and Find Full Text PDFCrucial to effective optical trapping is the ability to precisely control the nature of force/potential to be attractive or repulsive. The nature of particles being trapped is as important as the role of laser parameters in determining the stability of the optical trap. In this context, hybrid particles comprising of both dielectric and metallic materials offer a wide range of new possibilities due to their tunable optical properties.
View Article and Find Full Text PDFPhotocycle in wild-type green fluorescent protein (wt-GFP) involves generation of a bright fluorescent deprotonated chromophore from feebly fluorescent protonated form via excited-state proton transfer. In addition to this usual photocycle, wt-GFP is also known to exhibit irreversible photoconversion upon illumination with ultraviolet and visible radiation. However, a detailed understanding of photoconversion in enhanced GFP (EGFP: S65T/F64L mutant of wt-GFP), which predominantly exists in deprotonated form, is yet to be explored.
View Article and Find Full Text PDFA catalyst-free method for the synthesis of dimeric (-)-flavoskyrins has been developed. It involves the autoxidation of chemoenzymatically synthesized ()-configured dihydroanthracenones in the presence of molecular oxygen in buffer of pH 6.0 followed by spontaneous [4 + 2] cycloaddition in stereocontrolled -anti fashion to form (-)-flavoskyrins.
View Article and Find Full Text PDFPhotophysical properties of tricarbocyanine dyes in various solvents have been widely investigated using a variety of spectroscopic tools. However, the presence of several ground-state isomers and interconversion between these isomers on an ultrafast timescale upon photoexcitation render unambiguous assignment of spectral features quite difficult. In this work, ultrafast excited-state dynamics of two tricarbocyanine dyes in two solvents, DNTTCI and IR140, in ethanol and ethylene glycol, are studied by two-dimensional electronic spectroscopy (2DES).
View Article and Find Full Text PDFWater plays a pivotal role in structural stability of supramolecular pigment assemblies designed for natural light harvesting (for example, chlorosome antenna complex) as well as their artificial analogs. However, the dynamic role of water in the context of excite-state relaxation has not been explored till date, which we report here. Using femtosecond transient absorption spectroscopy, we investigate the excited-state dynamics of two types of nano-scale assemblies of chlorophyll a with different structural motifs, rod-shaped and micellar assemblies, that depend on the water content.
View Article and Find Full Text PDFThe dynamic role of solvent in influencing the rates of physico-chemical processes (for example, polar solvation and electron transfer) has been extensively studied using time-resolved fluorescence spectroscopy. Here we study ultrafast excited state relaxation dynamics of three different fluorescent probes (DNTTCI, IR-140 and IR-144) in two polar solvents, ethanol and ethylene glycol, using spectrally resolved degenerate pump-probe spectroscopy. We discuss how time-resolved emission spectra can be directly used for constructing relaxation correlation function, obviating spectral reconstruction and estimation of time-zero spectrum in non-polar solvents.
View Article and Find Full Text PDF