Proc Natl Acad Sci U S A
December 2007
Vitamin B1 (thiamin) is an essential compound in all organisms acting as a cofactor in key metabolic reactions and has furthermore been implicated in responses to DNA damage and pathogen attack in plants. Despite the fact that it was discovered almost a century ago and deficiency is a widespread health problem, much remains to be deciphered about its biosynthesis. The vitamin is composed of a thiazole and pyrimidine heterocycle, which can be synthesized by prokaryotes, fungi, and plants.
View Article and Find Full Text PDFTo investigate the unknown stereochemical course of the reaction catalyzed by the type-II isomerase, which interconverts isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), a sample of [1,2-(13)C2]-IPP stereospecifically labelled with 2H at C2 was prepared by incubating a D2O solution of (E)-4-hydroxy-3-methyl[1,2-(13)C2]but-2-enyl diphosphate with a recombinant IspH protein of Escherichia coli in the presence of NADH as a reducing agent and flavodoxin as well as flavodoxin reductase as auxiliary proteins. As monitored by 13C-NMR spectroscopy, treatment of the deuterated IPP with either type-I or type-II IPP isomerase resulted in the formation of DMAPP molecules retaining all the 2H label of the starting material. From the known stereochemical course of the type-I isomerase-catalyzed reaction, one has to conclude that the label introduced from D2O in the course of the IspH reaction resides specifically in the H(Si)-C2 position of IPP and that the two isomerases mobilize specifically the same H(Re)-C2 ligand of their common IPP substrate.
View Article and Find Full Text PDFVitamin B6 is an essential metabolite in all organisms. De novo synthesis of the vitamin can occur through either of two mutually exclusive pathways referred to as deoxyxylulose 5-phosphate-dependent and deoxyxylulose 5-phosphate-independent. The latter pathway has only recently been discovered and is distinguished by the presence of two genes, Pdx1 and Pdx2, encoding the synthase and glutaminase subunit of PLP synthase, respectively.
View Article and Find Full Text PDFIncubation of samples of 2,3-dihydrosqualene, specifically labeled with deuterium at either carbon position 7 or 11, with an enzyme extract from Tetrahymena pyriformis, containing a squalene-tetrahymanol cyclase, provided specimens of euph-7-enes displaying deuterium patterns consistent with the biosynthetic operation of two consecutive 1,2-hydride shifts.
View Article and Find Full Text PDFThe ispH gene of Escherichia coli specifies an enzyme catalyzing the conversion of 1-hydroxy-2-methyl-2-(E)-butenyl diphosphate into a mixture of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP) in the nonmevalonate isoprenoid biosynthesis pathway. The implementation of a gene cassette directing the overexpression of the isc operon involved in the assembly of iron-sulfur clusters into an Escherichia coli strain engineered for ispH gene expression increased the catalytic activity of IspH protein anaerobically purified from this strain by a factor of at least 200. For maximum catalytic activity, flavodoxin and flavodoxin reductase were required in molar concentrations of 40 and 12 microM, respectively.
View Article and Find Full Text PDFAn open reading frame (Acc. no. P50740) on the Bacillus subtilis chromosome extending from bp 184,997-186,043 with similarity to the idi-2 gene of Streptomyces sp.
View Article and Find Full Text PDFThe mevalonate pathway for the biosynthesis of the universal terpenoid precursors, isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), is known in considerable detail. Only recently, the existence of a second mevalonate-independent pathway for the biosynthesis of IPP and DMAPP was detected in plants and certain eubacteria. Experiments with 13C and/or 2H-labelled precursors were crucial in the elucidation of this novel route.
View Article and Find Full Text PDFUpon feeding of [2-(13)C,4-(2)H]-1-deoxy-D-xylulose to Streptomyces ghanaensis, the deuterium label was retained exclusively at positions C-7 and C-17 in the moenocinol part of the moenomycin antibiotics. This result vindicates the hypothesis that the C(25) structure of moenocinol is assembled from a C(10) and a C(15) precursor, each of which requires for its formation the involvement of a dimethylallyl diphosphate starter unit.
View Article and Find Full Text PDFEarlier in vivo studies have shown that the sequential action of the IspG and IspH proteins is essential for the reductive transformation of 2C-methyl-d-erythritol 2,4-cyclodiphosphate into dimethylallyl diphosphate and isopentenyl diphosphate via 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate. A recombinant fusion protein comprising maltose binding protein and IspG protein domains was purified from a recombinant Escherichia coli strain. The purified protein failed to transform 2C-methyl-d-erythritol 2,4-cyclodiphosphate into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate, but catalytic activity could be restored by the addition of crude cell extract from an ispG-deficient E.
View Article and Find Full Text PDFCut sprouts of Hypericum perforatum were proffered solutions containing [1-(13)C]glucose or [U-(13)C(6)]glucose. Hyperforin was isolated and analyzed by quantitative NMR spectroscopy. The labeling patterns show that the biosynthesis of hyperforin involves five isoprenoid moieties, which are derived entirely or predominantly (>98%) via the deoxyxylulose phosphate pathway.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2002
Earlier in vivo studies showed the involvement of IspH protein in the conversion of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate into isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). We have demonstrated now that cell extract of an Escherichia coli strain engineered for hyperexpression of the ispH (lytB) gene catalyzes the in vitro conversion of 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate into IPP and DMAPP. The reaction requires NADH, FAD, divalent cations (preferably Co2+), and probably one or more as-yet-unidentified proteins.
View Article and Find Full Text PDF(E)-1-hydroxy-2-methyl-but-2-enyl 4-diphosphate (E-6) was synthesized in six reaction steps from hydroxyacetone (9) and (ethoxycarbonylmethenyl)-triphenylphosphorane (11) with an overall yield of 38%. The compound was shown to be identical with the product of IspG protein, which serves as an intermediate in the nonmevalonate terpene biosynthetic pathway.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2002
Isopentenyl diphosphate and dimethylallyl diphosphate serve as the universal precursors for the biosynthesis of terpenes. Although their biosynthesis by means of mevalonate has been studied in detail, a second biosynthetic pathway for their formation by means of 1-deoxy-D-xylulose 5-phosphate has been discovered only recently in plants and certain eubacteria. Earlier in vivo experiments with recombinant Escherichia coli strains showed that exogenous 1-deoxy-D-xylulose can be converted into 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate by the consecutive action of enzymes specified by the xylB and ispCDEFG genes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2001
Recombinant Escherichia coli cells engineered for the expression of the xylB gene in conjunction with genes of the nonmevalonate pathway were supplied with (13)C-labeled 1-deoxy-D-xylulose. Cell extracts were analyzed directly by NMR spectroscopy. (13)C-labeled 2C-methyl-D-erythritol 2,4-cyclodiphosphate was detected at high levels in cells expressing xylB, ispC, ispD, ispE, and ispF.
View Article and Find Full Text PDF2C-methyl-D-erythritol 2,4-cyclodiphosphate was recently shown to be formed from 2C-methyl-D-erythritol 4-phosphate by the consecutive action of IspD, IspE, and IspF proteins in the nonmevalonate pathway of terpenoid biosynthesis. To complement previous work with radiolabelled precursors, we have now demonstrated that [U-13C5]2C-methyl-D-erythritol 4-phosphate affords [U-13C5]2C-methyl-D-erythritol 2,4-cyclodiphosphate in isolated chromoplasts of Capsicum annuum and Narcissus pseudonarcissus. Moreover, chromoplasts are shown to efficiently convert 2C-methyl-D-erythritol 4-phosphate as well as 2C-methyl-D-erythritol 2,4-cyclodiphosphate into the carotene precursor phytoene.
View Article and Find Full Text PDF1-Deoxy-D-xylulose-5-phosphate is converted into 2-C-methyl-D-erythritol-4-phosphate by the catalytic action of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (Dxr protein) using NADPH as cofactor. The stereochemical features of this reaction were investigated in in vitro experiments with the recombinant Dxr protein of Escherichia coli using (4R)- or (4S)-[4-(2)H(1)]NADPH as coenzyme. The enzymatically formed 2-C-methyl-D-erythritol-4-phosphate was isolated and converted into 1,2:3,4-di-O-isopropylidene-2-C-methyl-D-erythritol; NMR spectroscopic investigation of this derivative indicated that only (4S)-[4-(2)H(1)]NADPH affords 2-C-methyl-D-erythritol-4-phosphate labelled exclusively in the H(Re) position of C-1.
View Article and Find Full Text PDFThe biosynthesis of the diterpene 8alpha-acetoxy-13alpha-hydroxy-5-oxo-13-epi- neoverrucosane in the arctic liverwort Fossombronia alaskana was studied by incorporation experiments using [1-(13)C]- and [U-(13)C(6)]glucose as precursors. The (13)C-labeling patterns of acetyl-CoA, pyruvate, and phosphoenolpyruvate in intermediary metabolism were reconstructed from the (13)C NMR data of biosynthetic amino acids (leucine, alanine, phenylalanine) and were used to predict hypothetical labeling patterns for isopentenyl pyrophosphate formed via the mevalonate pathway and the deoxyxylulose pathway. The labeling patterns observed for the neoverrucosane diterpene were consistent with the intermediate formation of geranyllinaloyl pyrophosphate assembled from dimethylallyl pyrophosphate and three molecules of isopentenyl pyrophosphate generated predominantly or entirely via 1-deoxyxylulose 5-phosphate.
View Article and Find Full Text PDFCell cultures of Catharanthus roseus were supplied with [2-13C, 3-2H]-deoxyxylulose or [2-13C,4-2H]1-deoxyxylulose. Lutein and chlorophylls were isolated from the cell mass, and hydrolysis of the chlorophyll mixtures afforded phytol. Isotope labeling patterns of phytol and lutein were determined by 2H NMR and 1H,2H-decoupled 13C NMR.
View Article and Find Full Text PDFRecent studies have uncovered the existence of an alternative, non-mevalonate pathway for the formation of isopentenyl pyrophosphate and dimethylallyl pyrophosphate, the two building blocks of terpene biosynthesis.
View Article and Find Full Text PDFThe biosynthesis of verrucosan-2beta-ol in the green phototrophic eubacterium Chloroflexus aurantiacus was investigated by in vivo incorporation of singly or doubly 13C-labeled acetate. The 13C labeling of the isolated diterpene was analyzed by one- and two-dimensional NMR spectroscopy. The 13C-labeling patterns of verrucosan-2beta-ol were compared with the labeling patterns of intermediary metabolites (acetyl-CoA, pyruvate, and glyceraldehyde 3-phosphate) which were deduced from amino acids and nucleosides by retrobiosynthetic analysis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 1997
The incorporation of [1-13C]- and [2,3,4,5-13C4]1-deoxy-D-xylulose into beta-carotene, lutein, phytol, and sitosterol in a cell culture of Catharanthus roseus was analyzed by NMR spectroscopy. The labeling patterns of the isoprene precursors, isopentenyl pyrophosphate and dimethylallyl pyrophosphate, were obtained from the terpenes by a retrobiosynthetic approach. 13C Enrichment and 13C13C coupling patterns showed conclusively that 1-deoxy-D-xylulose and not mevalonate is the predominant isoprenoid precursor of phytol, beta-carotene, and lutein.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 1992
Four metabolites named peritoxins A and B and periconins A and B have been isolated together with the known metabolite circinatin from culture filtrates of the fungal pathogen Periconia circinata. Peritoxins A and B, which correspond to the P. circinata toxins Ia and IIa partially characterized in previous work, are selectively toxic to genotypes of Sorghum bicolor susceptible to the pathogen, whereas periconins A and B are biologically inactive.
View Article and Find Full Text PDF