Oxygen played a pivotal role in the evolution of multicellularity during the Cambrian Explosion. Not surprisingly, responses to fluctuating oxygen concentrations are integral to the evolution of cancer-a disease characterized by the breakdown of multicellularity. Poorly organized tumor vasculature results in chaotic patterns of blood flow characterized by large spatial and temporal variations in intra-tumoral oxygen concentrations.
View Article and Find Full Text PDFAcidosis is an important immunosuppressive mechanism that leads to tumor growth. Therefore, we investigated the neutralization of tumor acidity to improve immunotherapy response. L-DOS47, a new targeted urease immunoconjugate designed to neutralize tumor acidity, has been well tolerated in phase I/IIa trials.
View Article and Find Full Text PDFGene expression change is a dominant mode of evolution. Mutations, however, can affect gene expression in multiple cell types. Therefore, gene expression evolution in one cell type can lead to similar gene expression changes in another cell type.
View Article and Find Full Text PDFIntroduction: Volatile and intravenous anesthetics may worsen oncologic outcomes in basic science animal models. These effects may be related to suppressed innate and adaptive immunity, decreased immunosurveillance, and disrupted cellular signaling. We hypothesized that anesthetics would promote lung tumor growth via altered immune function in a murine model and tested this using an immunological control group of immunodeficient mice.
View Article and Find Full Text PDFAcidosis is an important immunosuppressive mechanism that leads to tumor growth. Therefore, we investigated the neutralization of tumor acidity to improve immunotherapy response. L-DOS47, a new targeted urease immunoconjugate designed to neutralize tumor acidity, has been well tolerated in phase I/IIa trials.
View Article and Find Full Text PDFThe extracellular pH (pHe) of solid tumors is often acidic, as a consequence of the Warburg effect, and an altered metabolic state is often associated with malignancy. It has been shown that acidosis can promote tumor progression; thus, many therapeutic strategies have been adopted against tumor metabolism; one of these involves alkalinization therapies to raise tumor pH to inhibit tumor progression, improve immune surveillance, and overcome resistance to chemotherapies. Chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) is a noninvasive technique that can measure pH using pH-sensitive contrast agents.
View Article and Find Full Text PDFUnlabelled: "Dysregulated" metabolism is a characteristic of the cancer cell phenotype. This includes persistent use of glycolytic metabolism in normoxic environments (Warburg effect) leading to increased acid production and accumulation of protons in the interstitial space. Although often thought to be disordered, altered cancer metabolism is the outcome of intense Darwinian selection and, thus, must have evolved to maximize cancer cell fitness.
View Article and Find Full Text PDFClinical cancers are typically spatially and temporally heterogeneous, containing multiple microenvironmental habitats and diverse phenotypes and/or genotypes, which can interact through resource competition and direct or indirect interference. A common intratumoral evolutionary pathway, probably initiated as adaptation to hypoxia, leads to the "Warburg phenotype" which maintains high glycolytic rates and acid production, even in normoxic conditions. Since individual cancer cells are the unit of Darwinian selection, intraspecific competition dominates intratumoral evolution.
View Article and Find Full Text PDFTumors are highly dynamic ecosystems in which diverse cancer cell subpopulations compete for space and resources. These complex, often non-linear interactions govern continuous spatial and temporal changes in the size and phenotypic properties of these subpopulations. Because intra-tumoral blood flow is often chaotic, competition for resources may be a critical selection factor in progression and prognosis.
View Article and Find Full Text PDFBackground: Cancer progression is governed by evolutionary dynamics in both the tumour population and its host. Since cancers die with the host, each new population of cancer cells must reinvent strategies to overcome the host's heritable defences. In contrast, host species evolve defence strategies over generations if tumour development limits procreation.
View Article and Find Full Text PDFThe acidic pH of tumors profoundly inhibits effector functions of activated CD8 + T-cells. We hypothesize that this is a physiological process in immune regulation, and that it occurs within lymph nodes (LNs), which are likely acidic because of low convective flow and high glucose metabolism. Here we show by in vivo fluorescence and MR imaging, that LN paracortical zones are profoundly acidic.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFBackground: Tumours rapidly ferment glucose to lactic acid even in the presence of oxygen, and coupling high glycolysis with poor perfusion leads to extracellular acidification. We hypothesise that acidity, independent from lactate, can augment the pro-tumour phenotype of macrophages.
Methods: We analysed publicly available data of human prostate cancer for linear correlation between macrophage markers and glycolysis genes.
The extracellular pH of solid tumors is unequivocally acidic due to a combination of high rates of lactic acid production (a consequence of fermentative glycolytic metabolism) and poor perfusion. This has been documented by us and others in a wide variety of solid tumor models, primarily using magnetic resonance spectroscopic imaging (MRSI). This acidity contributes to tumor progression by inducing genome instability, promoting local invasion and metastases, inhibiting anti-tumor immunity, and conferring resistance to chemo- and radio-therapies.
View Article and Find Full Text PDFRecent reports indicate that hypoxia influences the circadian clock through the transcriptional activities of hypoxia-inducible factors (HIFs) at clock genes. Unexpectedly, we uncover a profound disruption of the circadian clock and diurnal transcriptome when hypoxic cells are permitted to acidify to recapitulate the tumor microenvironment. Buffering against acidification or inhibiting lactic acid production fully rescues circadian oscillation.
View Article and Find Full Text PDFDue to imbalances between vascularity and cellular growth patterns, the tumour microenvironment harbours multiple metabolic stressors including hypoxia and acidosis, which have significant influences on remodelling both tumour and peritumoral tissues. These stressors are also immunosuppressive and can contribute to escape from immune surveillance. Understanding these effects and characterizing the pathways involved can identify new targets for therapy and may redefine our understanding of traditional anti-tumour therapies.
View Article and Find Full Text PDFNeutralizing tumor external acidity with oral buffers has proven effective for the prevention and inhibition of metastasis in several cancer mouse models. Solid tumors are highly acidic as a result of high glycolysis combined with an inadequate blood supply. Our prior work has shown that sodium bicarbonate, imidazole, and free-base (but not protonated) lysine are effective in reducing tumor progression and metastasis.
View Article and Find Full Text PDFOngoing intratumoral evolution is apparent in molecular variations among cancer cells from different regions of the same tumor, but genetic data alone provide little insight into environmental selection forces and cellular phenotypic adaptations that govern the underlying Darwinian dynamics. In three spontaneous murine cancers (prostate cancers in TRAMP and PTEN mice, pancreatic cancer in KPC mice), we identified two subpopulations with distinct niche construction adaptive strategies that remained stable in culture: (i) invasive cells that produce an acidic environment via upregulated aerobic glycolysis; and (ii) noninvasive cells that were angiogenic and metabolically near-normal. Darwinian interactions of these subpopulations were investigated in TRAMP prostate cancers.
View Article and Find Full Text PDFThe role of mesenchymal stem cells (MSC) in osteosarcoma (OS), the most common primary tumor of bone, has not been extensively elucidated. We have recently shown that OS is characterized by interstitial acidosis, a microenvironmental condition that is similar to a wound setting, in which mesenchymal reactive cells are activated to release mitogenic and chemotactic factors. We therefore intended to test the hypothesis that, in OS, acid-activated MSC influence tumor cell behavior.
View Article and Find Full Text PDFCancer immunotherapies, such as immune checkpoint blockade or adoptive T-cell transfer, can lead to durable responses in the clinic, but response rates remain low due to undefined suppression mechanisms. Solid tumors are characterized by a highly acidic microenvironment that might blunt the effectiveness of antitumor immunity. In this study, we directly investigated the effects of tumor acidity on the efficacy of immunotherapy.
View Article and Find Full Text PDFHypoxia in tumors correlates with greater risk of metastases, increased invasiveness, and resistance to systemic and radiation therapy. The evolutionary dynamics that links specific adaptations to hypoxia with these observed tumor properties have not been well investigated. While some tumor populations may experience fixed hypoxia, cyclical and stochastic transitions from normoxia to hypoxia are commonly observed in vivo.
View Article and Find Full Text PDFPancreatic ductal adenocarcinomas are desmoplastic and hypoxic, both of which are associated with poor prognosis. Hypoxia-activated prodrugs (HAPs) are specifically activated in hypoxic environments to release cytotoxic or cytostatic effectors. TH-302 is a HAP that is currently being evaluated in a Phase III clinical trial in pancreatic cancer.
View Article and Find Full Text PDFMany studies have shown that the acidity of solid tumors contributes to local invasion and metastasis. Oral pH buffers can specifically neutralize the acidic pH of tumors and reduce the incidence of local invasion and metastatic formation in multiple murine models. However, this effect is not universal as we have previously observed that metastasis is not inhibited by buffers in some tumor models, regardless of buffer used.
View Article and Find Full Text PDFProstate cancer treatment is often accompanied by untoward side effects. Therefore, chemoprevention to reduce the risk and inhibit the progression of prostate cancer may be an effective approach to reducing disease burden. We investigated the safety and efficacy of Polyphenon E, a green tea extract, in reducing the progression of prostate cancer in transgenic adenocarcinoma of the mouse prostate (TRAMP) mice.
View Article and Find Full Text PDF