Publications by authors named "Arif Sanlı Ergun"

We investigated the effect of low-intensity focused ultrasound (LIFU) on gene expression related to alcohol dependence and histological effects on brain tissue. We also aimed at determining the miRNA-mRNA relationship and their pathways in alcohol dependence-induced expression changes after focused ultrasound therapy. We designed a case-control study for 100 days of observation to investigate differences in gene expression in the short-term stimulation group (STS) and long-term stimulation group (LTS) compared with the control sham group (SG).

View Article and Find Full Text PDF

Capacitive micromachined ultrasonic transducer (CMUT) technology has enjoyed rapid development in the last decade. Advancements both in fabrication and integration, coupled with improved modelling, has enabled CMUTs to make their way into mainstream ultrasound imaging systems and find commercial success. In this review paper, we touch upon recent advancements in CMUT technology at all levels of abstraction; modeling, fabrication, integration, and applications.

View Article and Find Full Text PDF

Conventional High Intensity Focused Ultrasound (HIFU) is a therapeutic modality which is extracorporeally administered. In applications where a relatively small HIFU lesion is required, an intravascular HIFU probe can be deployed to the ablation site. In this paper, we demonstrate the design and implementation a fully integrated HIFU drive system on a chip to be placed on a 6 Fr catheter probe.

View Article and Find Full Text PDF

Purpose: In this study, a new simple Fourier domain-based analytical expression for the Bloch-Siegert (BS) shift-based B1 mapping method is proposed to obtain |B1+| more accurately while using short BS pulse durations and small off-resonance frequencies.

Theory And Methods: A new simple analytical expression for the BS shift is derived by simplifying the Bloch equations. In this expression, the phase is calculated in terms of the Fourier transform of the radiofrequency pulse envelope, and thus making the off- and on-resonance effects more easily understandable.

View Article and Find Full Text PDF

Crosstalk is the coupling of energy between the elements of an ultrasonic transducer array. This coupling degrades the performance of transducers in applications such as medical imaging and therapeutics. In this paper, we present an experimental demonstration of guided interface waves in capacitive micromachined ultrasonic transducers (CMUTs).

View Article and Find Full Text PDF

We report experimental results from a comparative study on collapsed region and conventional region operation of capacitive micromachined ultrasonic transducers (CMUTs) fabricated with a wafer bonding technique. Using ultrasonic pulse-echo and pitch-catch measurements, we characterized single elements of 1-D CMUT arrays operating in oil. The experimental results from this study agreed with the simulation results: a CMUT operating in the collapsed region produced a higher maximum output pressure than a CMUT operated in the conventional region at 90% of its collapse voltage (3 kPa/V vs.

View Article and Find Full Text PDF

Capacitive micromachined ultrasonic transducer (cMUT) technology is a prime candidate for next generation imaging systems. Medical and underwater imaging and the nondestructive evaluation (NDE) societies have expressed growing interest in cMUTs over the years. Capacitive micromachined ultrasonic transducer technology is expected to make a strong impact on imaging technologies, especially volumetric imaging, and to appear in commercial products in the near future.

View Article and Find Full Text PDF

The electromechanical coupling coefficient is an important figure of merit of ultrasonic transducers. The transducer bandwidth is determined by the electromechanical coupling efficiency. The coupling coefficient is, by definition, the ratio of delivered mechanical energy to the stored total energy in the transducer.

View Article and Find Full Text PDF