Publications by authors named "Arif Cetin"

Familial Mediterranean Fever (FMF) is an autosomal recessive genetic disorder, primarily observed in populations around the Mediterranean Sea, linked to MEFV gene mutations. These mutations disrupt inflammatory responses, increasing pyrin-protein production. Traditional diagnosis relies on clinical symptoms, family history, acute phase reactants, and excluding similar syndromes with MEFV testing, which is expensive and often inconclusive due to heterozygous mutations.

View Article and Find Full Text PDF

The objective of this research was to examine the Love-Hate and Identification Relationship of Individuals Participating in Euroleague Match for Recreational Purposes. The study was conducted using a relational survey methodology. The study's population comprises persons who watching recreational purpose part in the Euroleague match held in Istanbul in 2023-2024 season, while the sample consists of 178 voluntary participants selected through convenience sampling.

View Article and Find Full Text PDF

Objectives: Triazolopyrimidinones are compounds used in medicinal chemistry. In this study, three novel triazolopyrimidinone derivatives were synthesized as drug candidates: (5-(chloromethyl)-2-(4-methoxyphenyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7(3H)-one) (S1-TP), 2-(4-methoxyphenyl)-5-(piperidinomethyl)-[1,2,4]triazolo[1,5-a]pyrimidin-7(3H)-one) (S2-TP), and 2-(4-methoxyphenyl)-5-(morpholinomethyl)-[1,2,4]triazolo[1,5-a] pyrimidin-7(3H)-one) (S3-TP). Their electrochemical properties were investigated for the first time using voltammetric techniques on carbon graphite electrodes.

View Article and Find Full Text PDF

Functional assay platforms could identify the biophysical properties of cells and their therapeutic response to drug treatments. Despite their strong ability to assess cellular pathways, functional assays require large tissue samples, long-term cell culture, and bulk measurements. Even though such a drawback is still valid, these limitations did not hinder the interest in these platforms for their capacity to reveal drug susceptibility.

View Article and Find Full Text PDF

Cell-counting is critical for a wide range of applications, , life sciences, medicine, or pharmacology. Hemocytometry is a classical method that requires manual counting of cells under a microscope. This methodology is low-cost but manual counting is slow, and the test accuracy is limited by the operator experience.

View Article and Find Full Text PDF

Nanoceria (cerium oxide nanoparticles: CeO-NPs) has received significant attention due to its biocompatibility, good conductivity, and the ability to transfer oxygen. Nanoceria has been widely used to develop electrochemical sensors and biosensors as it could increase response time, sensitivity, and stability of the sensor. In this review, we discussed synthesis methods, and the recent applications employing CeO-NPs for electrochemical detection of various analytes reported in the most recent four years.

View Article and Find Full Text PDF

Plasmonic sensors exhibit tremendous potential to accomplish real-time, label-free, and high-sensitivity biosensing. Gold nanohole array (GNA) is one of the classic plasmonic nanostructures that can be readily fabricated and integrated into microfluidic platforms for a variety of applications. Even though GNA has been widely studied, new phenomena and applications are still emerging continuously expanding its capabilities.

View Article and Find Full Text PDF

In this article, we introduced an electrochemical biosensor employing graphite electrodes (GE) decorated with Nickel ferrite (NiFeO) nanoparticles for nucleic acid detection. NiFeO nanoparticles in a narrow size distribution were synthesized with co-precipitation technique. Their chemical and crystallographic properties were characterized with FTIR and X-ray spectroscopies.

View Article and Find Full Text PDF

Objectives: Linagliptin (Lin) is a drug used in treatment of type 2 diabetes mellitus. In this study, the electrochemical detection of Lin and its interaction with DNA was analyzed for the first time using voltammetric methods by measuring the oxidation currents of the adenine bases of DNA before and after the interaction. In addition, the electrochemical properties of the Lin were studied.

View Article and Find Full Text PDF

After World Health Organization (WHO) announced COVID-19 outbreak a pandemic, we all again realized the importance of developing rapid diagnostic kits. In this article, we introduced a lightweight and field-portable biosensor employing a plasmonic chip based on nanohole arrays integrated to a lensfree-imaging framework for label-free detection of viruses in field-settings. The platform utilizes a CMOS (complementary metal-oxide-semiconductor) camera with high quantum efficiency in the spectral window of interest to monitor diffraction field patterns of nanohole arrays under the uniform illumination of an LED (light-emitting diode) source which is spectrally tuned to the plasmonic mode supported by the nanohole arrays.

View Article and Find Full Text PDF

Accessing cell growth on adhesive substrates is critical for identifying biophysical properties of cells and their therapeutic response to drug therapies. However, optical techniques have low sensitivity, and their reliability varies with cell type, whereas microfluidic technologies rely on cell suspension. In this paper, we introduced a plasmonic functional assay platform that can precisely measure cell weight and the dynamic change in real-time for adherent cells.

View Article and Find Full Text PDF

Detection of pathogens, e.g., bacteria and viruses, is still a big challenge in analytical medicine due to their vast number and variety.

View Article and Find Full Text PDF

Efficient transduction of optical energy to bioelectrical stimuli is an important goal for effective communication with biological systems. For that, plasmonics has a significant potential via boosting the light-matter interactions. However, plasmonics has been primarily used for heat-induced cell stimulation due to membrane capacitance change (i.

View Article and Find Full Text PDF

Photonic crystals and plasmonic nanohole arrays are the conventional substrates for label-free biodetection applications. In this article, we readdressed these systems in terms of their sensing capability and provided a broad picture for a selection mechanism of optimum parameters providing strong sensing signals. We first investigated the physical origin of the transmission resonances supported by the two systems, which is the core of the label-free sensing mechanism, relying on strong light-matter interactions.

View Article and Find Full Text PDF

We demonstrated a proof-of-principle concept of a label-free platform that enables nucleic acid sequencing by binding methodology. The system utilizes gold surfaces having high fidelity plasmonic nanohole arrays which are very sensitive to minute changes of local refractive indices. Our novel surface chemistry approach ensures accurate identification of correct bases at individual positions along a targeted DNA sequence on the gold surface.

View Article and Find Full Text PDF

One major marker of nitrosative stress is the formation of 3-Nitrotyrosine (3-NT) from Tyrosine (Tyr) by adding a nitro group (-NO) with nitrating agents. Nitration of Tyr often causes loss of protein activity and is linked with many diseases. In this article, we detect 3-NT and discriminate it from Tyr with Differential Pulse Voltammetry (DPV) as it is a very important biomarker.

View Article and Find Full Text PDF

Multiple myeloma (MM) has benefited from significant advancements in treatment that have improved outcomes and reduced morbidity. However, the disease remains incurable and is characterized by high rates of drug resistance and relapse. Consequently, methods to select the most efficacious therapy are of great interest.

View Article and Find Full Text PDF

We demonstrate a high-throughput biosensing device that utilizes microfluidics based plasmonic microarrays incorporated with dual-color on-chip imaging toward real-time and label-free monitoring of biomolecular interactions over a wide field-of-view of >20 mm(2). Weighing 40 grams with 8.8 cm in height, this biosensor utilizes an opto-electronic imager chip to record the diffraction patterns of plasmonic nanoapertures embedded within microfluidic channels, enabling real-time analyte exchange.

View Article and Find Full Text PDF

Directed assembly of nano building blocks offers a versatile route to the creation of complex nanostructures with unique properties. Bottom-up directed assembly of nanoparticles have been considered as one of the best approaches to fabricate such functional and novel nanostructures. However, there is a dearth of studies on making crystalline, solid, and homogeneous nanostructures.

View Article and Find Full Text PDF

Effective analyte delivery is essential to achieve rapid and sensitive biodetection systems. In this article, we present an actively controlled fluidic system integrated with a suspended plasmonic nanohole sensor to achieve superior analyte delivery efficiency and ultrafast sensor response, as compared to conventional fluidic systems. 70 nm sized virus like analyte solution is used to experimentally demonstrate the system performance improvements.

View Article and Find Full Text PDF

By introducing a conducting metal layer underneath a Fano resonant asymmetric ring/disk plasmonic nanocavity system, we demonstrate that electromagnetic fields can be strongly enhanced. These large electromagnetic fields extending deep into the medium are highly accessible and increase the interaction volume of analytes and optical fields. As a result, we demonstrate high refractive index sensitivities as large as 648 nm/RIU.

View Article and Find Full Text PDF

We experimentally and numerically demonstrate a planar metamaterial consisting of two asymmetrically positioned π-structures in a single unit that exhibits plasmonic analogue of electromagnetically induced transparency (EIT). Through the coupling of the constituent nanorod elements, the proposed structure enables fine spectral tuning of the EIT-like behavior and controlling the location of near field enhancement. Originated from the asymmetric cascaded π-structures, we introduce a more compact system which possesses the EIT-like characteristics and as well as much smaller mode volumes.

View Article and Find Full Text PDF

We introduce an ultrasensitive label-free detection technique based on asymmetric Fano resonances in plasmonic nanoholes with far reaching implications for point-of-care diagnostics. By exploiting extraordinary light transmission phenomena through high-quality factor (Q(solution) ∼ 200) subradiant dark modes, we experimentally demonstrate record high figures of merits (FOMs as high as 162) for intrinsic detection limits surpassing that of the gold standard prism coupled surface-plasmon sensors (Kretschmann configuration). Our experimental record high sensitivities are attributed to the nearly complete suppression of the radiative losses that are made possible by the high structural quality of the fabricated devices as well as the subradiant nature of the resonances.

View Article and Find Full Text PDF