Fibres with a range of abilities to perturb cholesterol homeostasis were used to investigate how the serum cholesterol-lowering effects of insoluble dietary fibres are related to parameters of intestinal cholesterol absorption and hepatic cholesterol homeostasis in mice. Cholestyramine, chitosan and cellulose were used as examples of fibres with high, intermediate and low bile acid-binding capacities, respectively. The serum cholesterol levels in a control group of mice fed a high fat/high cholesterol (HFHC) diet for 3 weeks increased about 2-fold to 4.
View Article and Find Full Text PDFTransforming growth factor beta is the prototype of a large family of secreted factors that regulate multiple biological processes. In the immune system, TGFbeta acts as an anti-inflammatory and immunosuppressive molecule, whereas the cytokine interleukin (IL)-1beta is a crucial mediator of inflammatory responses and induces proinflammatory genes and acute phase proteins. Here, we present evidence for the existence of a direct inhibitory interaction between the IL-1beta and TGFbeta signaling cascades that is not dependent on IL-1beta-induced SMAD7 expression.
View Article and Find Full Text PDFThere is now a general consensus that the intestinal absorption of water-insoluble, dietary lipids is protein-mediated, but the assignment of protein(s) to this function is still a matter of debate. To address this issue, we measured beta-carotene and cholesterol absorption in wild-type and SR-BI knockout mice and the uptake of these lipids in vitro using brush border membrane (BBM) vesicles. From the comparison of the in vivo and in vitro results we conclude that both BBM-resident class B scavenger receptors, SR-BI and CD36, can facilitate the absorption of beta-carotene and cholesterol.
View Article and Find Full Text PDF