The limitations of 2D microscopy constrain our ability to observe and understand tissue-wide networks that are, by nature, 3-dimensional. Optical projection tomography (OPT) enables the acquisition of large volumes (ranging from micrometres to centimetres) in various tissues. We present a multi-modal workflow for the characterization of both structural and quantitative parameters of the mouse small intestine.
View Article and Find Full Text PDFOptical projection tomography (OPT) is a powerful tool for three-dimensional imaging of mesoscopic biological samples with great use for biomedical phenotyping studies. We present a fluorescent OPT platform that enables direct visualization of biological specimens and processes at a centimeter scale with high spatial resolution, as well as fast data throughput and reconstruction. We demonstrate nearly isotropic sub-28 µm resolution over more than 60 mm after reconstruction of a single acquisition.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by amyloidosis of brain tissues. This phenomenon is studied with genetically-modified mouse models. We propose a method to quantify amyloidosis in whole 5xFAD mouse brains, a model of AD.
View Article and Find Full Text PDFIn recent years, three-dimensional mesoscopic imaging has gained significant importance in life sciences for fundamental studies at the whole-organ level. In this manuscript, we present an optical projection tomography (OPT) method designed for imaging of the intact mouse brain. The system features an isotropic resolution of ~50 µm and an acquisition time of four to eight minutes, using a 3-day optimized clearing protocol.
View Article and Find Full Text PDF