Fatty acids play important signaling roles in biology, albeit typically lacking potency or selectivity, due to their substantial conformational flexibility. While being recognized as having properties of potentially great value as therapeutics, it is often the case that the functionally relevant conformation of the natural fatty acid is not known, thereby complicating efforts to develop natural-product-inspired ligands that have similar functional properties along with enhanced potency and selectivity profiles. In other words, without structural information associated with a particular functional relationship and the hopelessly unbiased conformational preferences of the endogenous ligand, one is molecularly ill-informed regarding the precise ligand-receptor interactions that play a role in driving the biological activity of interest.
View Article and Find Full Text PDFBackground: In the pharmaceutical industry, competing for few validated drug targets there is a drive to identify new ways of therapeutic intervention. Here, we attempted to define guidelines to evaluate a target's 'fitness' based on its node characteristics within annotated protein functional networks to complement contingent therapeutic hypotheses.
Results: We observed that targets of approved, selective small molecule drugs exhibit high node centrality within protein networks relative to a broader set of investigational targets spanning various development stages.
Bruton's tyrosine kinase (BTK) is a member of the Tec kinase family that is expressed in cells of hematopoietic lineage. Evidence has shown that inhibition of BTK has clinical benefit for the treatment of a wide array of autoimmune and inflammatory diseases. Previously we reported the discovery of a novel nicotinamide selectivity pocket (SP) series of potent and selective covalent irreversible BTK inhibitors.
View Article and Find Full Text PDFAccurate ranking of compounds with regards to their binding affinity to a protein using computational methods is of great interest to pharmaceutical research. Physics-based free energy calculations are regarded as the most rigorous way to estimate binding affinity. In recent years, many retrospective studies carried out both in academia and industry have demonstrated its potential.
View Article and Find Full Text PDFBruton's tyrosine kinase (BTK) inhibitors such as ibrutinib hold a prominent role in the treatment of B cell malignancies. However, further refinement is needed to this class of agents, particularly in terms of adverse events (potentially driven by kinase promiscuity), which preclude their evaluation in nononcology indications. Here, we report the discovery and preclinical characterization of evobrutinib, a potent, obligate covalent inhibitor with high kinase selectivity.
View Article and Find Full Text PDFBruton's tyrosine kinase (Btk) is an attractive target for the treatment of a wide array of B-cell malignancies and autoimmune diseases. Small-molecule covalent irreversible Btk inhibitors targeting Cys481 have been developed for the treatment of such diseases. In clinical trials, probe molecules are required in occupancy studies to measure the level of engagement of the protein by these covalent irreversible inhibitors.
View Article and Find Full Text PDFBtk is an attractive target for the treatment of a range of Bcell malignancies as well as several autoimmune diseases such as murine lupus and rheumatoid arthritis. Several covalent irreversible inhibitors of Btk are currently in development including ibrutinib which was approved for treatment of B-cell malignancies. Herein, we describe our efforts using X-ray guided structure based design (SBD) to identify a novel chemical series of covalent Btk inhibitors.
View Article and Find Full Text PDFBruton's tyrosine kinase (Btk) is a member of the Tec kinase family that is expressed in cells of hematopoietic lineage (e.g. B cells, macrophages, monocytes, and mast cells).
View Article and Find Full Text PDFBruton's Tyrosine Kinase (BTK) is a member of the TEC kinase family that is expressed in cells of hematopoietic lineage (e.g., in B cells, macrophages, monocytes, and mast cells).
View Article and Find Full Text PDFIntrinsically disordered regions (IDRs) of proteins often regulate function upon post-translational modification (PTM) through interactions with folded domains. An IDR linking two α-helices (α1-α2) of the antiapoptotic protein Bcl-xL experiences several PTMs that reduce antiapoptotic activity. Here, we report that PTMs within the α1-α2 IDR promote its interaction with the folded core of Bcl-xL that inhibits the proapoptotic activity of two types of regulatory targets, BH3-only proteins and p53.
View Article and Find Full Text PDFUnderstanding signaling and other complex biological processes requires elucidating the critical roles of intrinsically disordered proteins (IDPs) and regions (IDRs), which represent ∼30% of the proteome and enable unique regulatory mechanisms. In this review, we describe the structural heterogeneity of disordered proteins that underpins these mechanisms and the latest progress in obtaining structural descriptions of conformational ensembles of disordered proteins that are needed for linking structure and dynamics to function. We describe the diverse interactions of IDPs that can have unusual characteristics such as "ultrasensitivity" and "regulated folding and unfolding".
View Article and Find Full Text PDFB-cell lymphoma 2 (BCL-2) family proteins mediate mitochondrial apoptosis by regulating mitochondrial outer membrane permeabilization (MOMP), which leads to the activation of the downstream caspase cascade to execute apoptosis. The pro-apoptotic and anti-apoptotic BCL-2 proteins function through protein-protein interactions in soluble and membrane-associated states. How soluble BCL-2 proteins interact is well understood.
View Article and Find Full Text PDFThe cytosolic fraction of the tumor suppressor p53 activates the apoptotic effector protein BAX to trigger apoptosis. Here we report that p53 activates BAX through a mechanism different from that associated with activation by BH3 only proteins (BIM and BID). We observed that cis-trans isomerization of proline 47 (Pro47) within p53, an inherently rare molecular event, was required for BAX activation.
View Article and Find Full Text PDFUnder conditions of genotoxic stress, human p53 activates the apoptotic effectors BAX or BAK to result in mitochondrial outer-membrane permeabilization and apoptosis. Antiapoptotic BCL-2 family member BCL-xL opposes this activity by sequestering cytosolic p53 via association with its DNA-binding domain, an interaction enhanced by p53 tetramerization. Here we characterized the BCL-xL-p53 complex by NMR spectroscopy and modulated it through mutagenesis to determine the relative contributions of BCL-xL's interactions with p53 or other BCL-2 family proteins to the BCL-xL-dependent inhibition of UV irradiation-induced apoptosis.
View Article and Find Full Text PDFThe declining effectiveness of current antibiotics due to the emergence of resistant bacterial strains dictates a pressing need for novel classes of antimicrobial therapies, preferably against molecular sites other than those in which resistance mutations have developed. Dihydropteroate synthase (DHPS) catalyzes a crucial step in the bacterial pathway of folic acid synthesis, a pathway that is absent in higher vertebrates. As the target of the sulfonamide class of drugs that were highly effective until resistance mutations arose, DHPS is known to be a valuable bacterial Achilles heel that is being further exploited for antibiotic development.
View Article and Find Full Text PDFDuring apoptotic cell death, cellular stress signals converge at the mitochondria to induce mitochondrial outer-membrane permeabilization (MOMP) through B cell lymphoma-2 (BCL-2) family proteins and their effectors. BCL-2 proteins function through protein-protein interactions, the mechanisms and structural aspects of which are only now being uncovered. Recently, the elucidation of the dynamic features underlying their function has highlighted their structural plasticity and the consequent complex thermodynamic landscape governing their protein-protein interactions.
View Article and Find Full Text PDFFollowing DNA damage, nuclear p53 induces the expression of PUMA, a BH3-only protein that binds and inhibits the antiapoptotic BCL-2 repertoire, including BCL-xL. PUMA, unique among BH3-only proteins, disrupts the interaction between cytosolic p53 and BCL-xL, allowing p53 to promote apoptosis via direct activation of the BCL-2 effector molecules BAX and BAK. Structural investigations using NMR spectroscopy and X-ray crystallography revealed that PUMA binding induced partial unfolding of two α-helices within BCL-xL.
View Article and Find Full Text PDFIt is now widely recognized that intrinsically disordered (or unstructured) proteins (IDPs, or IUPs) are found in organisms from all kingdoms of life. In eukaryotes, IDPs are highly abundant and perform a wide range of biological functions, including regulation and signaling. Despite increased interest in understanding the structural biology of IDPs, questions remain regarding the mechanisms through which disordered proteins perform their biological function(s).
View Article and Find Full Text PDFDeregulation of the c-Myc transcription factor is involved in many types of cancer, making this oncoprotein an attractive target for drug discovery. One approach to its inhibition has been to disrupt the dimeric complex formed between its basic helix-loop-helix leucine zipper (bHLHZip) domain and a similar domain on its dimerization partner, Max. As monomers, bHLHZip proteins are intrinsically disordered (ID).
View Article and Find Full Text PDFA three-dimensional pharmacophore model was generated utilizing a set of known inhibitors of c-Myc-Max heterodimer formation. The model successfully identified a set of structurally diverse compounds with potential inhibitory activity against c-Myc. Nine compounds were tested in vitro, and four displayed affinities in the micromolar range and growth inhibitory activity against c-Myc-overexpressing cells.
View Article and Find Full Text PDFBioorg Med Chem Lett
February 2009
The oncogenic transcription factor c-Myc undergoes coupled binding and folding of its basic-helix-loop-helix-leucine zipper domain (bHLHZip) upon heterodimerization with its partner protein Max. The latter exists in two isoforms: p21, which homodimerizes poorly, and p22, which homodimerizes well. We show that the effect of 10058-F4 (a small-molecule that binds disordered c-Myc monomers and disrupts the c-Myc-Max complex) on both c-Myc-Max heterodimerization and DNA binding is dependent on the nature of the Max isoform.
View Article and Find Full Text PDFThe basic-helix-loop-helix-leucine-zipper domains of the c-Myc oncoprotein and its obligate partner Max are intrinsically disordered (ID) monomers that undergo coupled folding and binding upon heterodimerization. We have identified the binding sites and determined the structural means by which two unrelated small molecules, 10058-F4 and 10074-G5, bind c-Myc and stabilize the ID monomer over the highly ordered c-Myc-Max heterodimer. In solution, the molecules bind to distinct regions of c-Myc and thus limit its ability to interact with Max and assume a more rigid and defined conformation.
View Article and Find Full Text PDFCompounds that selectively prevent or disrupt the association between the c-Myc oncoprotein and its obligate heterodimeric partner Max (Myc-Max compounds) have been identified previously by high-throughput screening of chemical libraries. Although these agents specifically inhibit the growth of c-Myc-expressing cells, their clinical applicability is limited by their low potency. We describe here several chemical modifications of one of these original compounds, 10058-F4, which result in significant improvements in efficacy.
View Article and Find Full Text PDF