Publications by authors named "Ariela V Paula"

In light of the growing demand for novel biocatalysts and enzyme production methods, this study aimed to evaluate the potential of Aspergillus tubingensis for producing lipase under submerged culture investigating the influence of culture time and inducer treatment. Moreover, this study also investigated conditions for the immobilization of A. tubingensis lipase by physical adsorption on styrene-divinylbenzene beads (Diaion HP-20), for these conditions to be applied to an alternative immobilization system with a packed-bed reactor.

View Article and Find Full Text PDF

The present work reports an optimization of the synthesis of MLM-type (medium, long, medium) structured lipids (SL) through an acidolysis reaction of grape seed oil with capric acid catalyzed by Rhizopus oryzae lipase immobilized. At first, tests were carried out by preparing the biocatalysts using enzyme loadings (0.15 to 1 g of enzymatic powder) for each gram of support.

View Article and Find Full Text PDF

This study aimed to assess the nutritional properties of dietary lipids obtained through the modification of aqueous enzymatically extracted pumpkin seed () oil. The optimal growth conditions for producing pectinase using strain sp. 391 were determined, and partial characterization of pectinase and commercial cellulase was conducted.

View Article and Find Full Text PDF

The synthesis of structured lipids with nutraceutical applications, such as medium-long-medium (MLM) triacylglycerols, via modification of oils and fats represents a challenge for the food industry. This study aimed to synthesize MLM-type dietary triacylglycerols by enzymatic acidolysis of cottonseed oil and capric acid (C10) catalyzed by Lipozyme RM IM (lipase from ) in a fluidized bed reactor (FBR). After chemical characterization of the feedstock and hydrodynamic characterization of the reactor, a 2 central composite rotatable design was used to optimize capric acid incorporation.

View Article and Find Full Text PDF

Carotenoids over-producing yeast has become a focus of interest of the biorefineries, in which the integration of the bioproduction with the following downstream processing units for the recovery and purification of carotenoids and other value-added byproducts is crucial to improve the sustainability and profitability of the overall bioprocess. Aiming the future implementation of Phaffia rhodozyma-based biorefineries, in this work, an integrative process for fractionation of intracellular compounds from P. rhodozyma biomass using non-hazardous bio-based solvents was developed.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is a therapeutic modality with high contributions in the treatment of cancer. This approach is based on photophysical principles, which presents as a less invasive strategy than conventional therapies. Combined with nanotechnology, the therapy becomes more efficient because nanoparticles (NPs) have advantageous characteristics such as biocompatibility, controlled, and targeted release, promoting solubility and decreasing the toxicity and side effects involved.

View Article and Find Full Text PDF

This study aimed to (i) prepare functionalized maghemite nanoparticles for immobilization of Candida rugosa lipase (CRL) by covalent binding, (ii) evaluate the application of the immobilized derivative in the hydrolysis of waste cooking oil (WCO) to fatty acids, and (iii) assess the potential of the hydrolyzed material for biodiesel production by hydroesterification. Maghemite (γFeO) obtained by precipitation of FeCl with NHOH served as an efficient support for covalent immobilization of CRL. Fourier-transform infrared spectroscopy and hydrolytic activity analysis indicated that CRL was covalently immobilized on the surface of the maghemite support.

View Article and Find Full Text PDF

Background: In the search for healthier and more functional foods, dietary triglycerides (TAGs) have played a prominent role in the food industry. The objective of this work was to evaluate new clay supports to immobilize lipase from Rhizopus oryzae and use it in the synthesis of TAGs.

Main Methods And Major Results: The immobilization of lipase by physical adsorption was carried out, determining the hydrolytic activity, esterification, immobilization yield, thermal stability, and kinetic and thermodynamic parameters.

View Article and Find Full Text PDF

Triacylglycerols (TAGs) can be modified to increase the absorption of fatty acids, prevent obesity, and treat fat malabsorption disorders and metabolic diseases. Medium-long-medium (MLM)-type TAGs, which contain medium-chain fatty acids in the sn-1 and sn-3 positions of the glycerol backbone and a long-chain fatty acid in the sn-2 position, show particularly interesting nutritional characteristics. This study aimed to synthesize MLM-type TAGs by enzymatic acidolysis of grape seed oil with medium-chain capric acid (C10:0) in associated packed bed reactors.

View Article and Find Full Text PDF

Lipases are enzymes employed in several industrial process and their applicability can be increased if these biocatalysts are in the immobilize form. The objective of this work was to study the immobilization of lipase produced by submerged cultivation of sp. by hydrophobic interaction, evaluating its stability and reuse capacity.

View Article and Find Full Text PDF

Seven food grade commercially available lipases were immobilized by covalent binding on polysiloxane-polyvinyl alcohol (POS-PVA) hybrid composite and screened to mediate reactions of industrial interest. The synthesis of butyl butyrate and the interesterification of tripalmitin with triolein were chosen as model reactions. The highest esterification activity (240.

View Article and Find Full Text PDF