As the largest funder of basic biomedical research in the US, the National Institutes of Health (NIH) has an interest in maintaining a sustainable, productive workforce of investigators. Over the years, NIH has implemented several programs to attract early-stage investigators and other applicants without prior NIH support. The latest of these is the Next Generation Researchers Initiative.
View Article and Find Full Text PDFMitochondrial function in human skeletal muscle declines with age. Most evidence for this decline comes from studies that assessed mitochondrial function indirectly, and the impact of such deterioration with respect to physical function has not been clearly delineated. We hypothesized that mitochondrial respiration in permeabilized human muscle fibers declines with age and correlates with phosphocreatine postexercise recovery rate (kPCr), muscle performance, and aerobic fitness.
View Article and Find Full Text PDFBackground: Lower muscle mitochondrial energy production may contribute to impaired walking endurance in patients with peripheral arterial disease. A borderline ankle-brachial index (ABI) of 0.91 to 1.
View Article and Find Full Text PDFSkeletal muscle mitochondrial oxidative capacity declines with age and negatively affects walking performance, but the mechanism for this association is not fully clear. We tested the hypothesis that impaired oxidative capacity affects muscle performance and, through this mechanism, has a negative effect on walking speed. Muscle mitochondrial oxidative capacity was measured by in vivo phosphorus magnetic resonance spectroscopy as the postexercise phosphocreatine resynthesis rate, k , in 326 participants (154 men), aged 24-97 years (mean 71), in the Baltimore Longitudinal Study of Aging.
View Article and Find Full Text PDFWhether individuals with insulin resistance (IR) but without criteria for diabetes exhibit reduced mitochondrial oxidative capacity is unclear; addressing this question could guide research for new therapeutics. We investigated 248 participants without diabetes from the Baltimore Longitudinal Study of Aging (BLSA) to determine whether impaired mitochondrial capacity is associated with prediabetes, IR, and duration and severity of hyperglycemia exposure. Mitochondrial capacity was assessed as the postexercise phosphocreatine recovery time constant (τ) by P-magnetic resonance spectroscopy, with higher τ values reflecting reduced capacity.
View Article and Find Full Text PDFSilaffins, long chain polyamines, and other biomolecules found in diatoms are involved in the assembly of a large number of silica nanostructures under mild, ambient conditions. Nanofabrication researchers have sought to mimic the diatom's biosilica production capabilities by engineering proteins to resemble aspects of naturally occurring biomolecules. Such mimics can produce monodisperse biosilica nanospheres, but in vitro production of the variety of intricate biosilica nanostructures that compose the diatom frustule is not yet possible.
View Article and Find Full Text PDFThe use of biomimetic approaches in the production of inorganic nanostructures is of great interest to the scientific and industrial community due to the relatively moderate physical conditions needed. In this vein, taking cues from silaffin proteins used by unicellular diatoms, several studies have identified peptide candidates for the production of silica nanostructures. In the current article, we study intensively one such silica-precipitating peptide, LKα14 (Ac-LKKLLKLLKKLLKL-c), an amphiphilic lysine/leucine repeat peptide that self-organizes into an α-helical secondary structure under appropriate concentration and buffer conditions.
View Article and Find Full Text PDF