Publications by authors named "Ariel Romano"

Boron in the ocean is generally considered a nonbiological element due to its relatively high concentration (0.4 mM) and depth independent concentration profile. Here we report an unexpected role for boron in the iron transport system of the marine bacterium Marinobacter algicola.

View Article and Find Full Text PDF

While there has been extensive interest in the use of boron isotope ratios as a surrogate of pH in paleoclimate studies in the context of climate change-related questions, the high (0.4 mM) concentration and the depth-independent (conservative or non-nutrient-like) concentration profile of this element have led to boron being neglected as a potentially biologically relevant element in the modern ocean. Here we report that boron affects the expression of a number of protein and genes in the "algal-associated" Gram-negative marine bacterium Marinobacter algicola DG893.

View Article and Find Full Text PDF
Article Synopsis
  • Iron is crucial for ocean microbial life, but its availability is limited; marine bacteria produce siderophores to transport iron.
  • Research suggests that heterotrophic bacteria and cyanobacteria mainly produce these important organic ligands, but concrete evidence has been hard to obtain due to their low concentrations and complex nature.
  • Using advanced molecular techniques like qPCR, researchers detected biosynthesis genes for various siderophores, indicating a significant potential for their production across different ocean depths and locations in the North Atlantic.
View Article and Find Full Text PDF

Bacteria use small diffusible molecules to exchange information in a process called quorum sensing (QS). An important class of quorum sensing molecules used by Gram-negative bacteria is the family of N-acylhomoserine lactones (HSL). It was recently discovered that a degradation product of the QS molecule 3-oxo-C(12)-homoserine lactone, the tetramic acid 3-(1-hydroxydecylidene)-5-(2-hydroxyethyl)pyrrolidine-2,4-dione, is a potent antibacterial agent, thus implying roles for QS outside of simply communication.

View Article and Find Full Text PDF

Iron is an essential element for oceanic microbial life but its low bioavailability limits microorganisms in large areas of the oceans. To acquire this metal many marine bacteria produce organic chelates that bind and transport iron (siderophores). We have previously shown that algal-associated heterotrophic bacteria belonging to the γ-proteobacterial Marinobacter genus release the siderophore vibrioferrin (VF).

View Article and Find Full Text PDF