Aims: Glucokinase (GK) is expressed in the glucose-sensing cells of the islets of Langerhans and plays a critical role in glucose homeostasis. Here, we tested the hypothesis that genetic activation of GK in a small subset of β-cells is sufficient to change the glucose set-point of the whole islet.
Material And Methods: Mouse models of cell-type specific GK deficiency (GKKO) and genetic enzyme activation (GKKI) in a subset of β-cells were obtained by crossing the αGSU (gonadotropin alpha subunit)-Cre transgene with the appropriate GK mutant alleles.
This review summarizes the current understanding of the development of the neuroendocrine gonadotropin-releasing hormone (GnRH) system, including discussion on open questions regarding (1) transcriptional regulation of the Gnrh1 gene; (2) prenatal development of the GnRH1 system in rodents and humans; and (3) paracrine and synaptic communication during migration of the GnRH cells.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
August 2021
Kisspeptin (encoded by ), a neuropeptide critically involved in neuroendocrine regulation of reproduction, is primarily synthesized in two hypothalamic nuclei: the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC). AVPV kisspeptin is thought to regulate the estrogen-induced positive feedback control of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH), and the preovulatory LH surge in females. In contrast, ARC kisspeptin neurons, which largely coexpress neurokinin B and dynorphin A (collectively named KNDy neurons), are thought to mediate estrogen-induced negative feedback control of GnRH/LH and be the major regulators of pulsatile GnRH/LH release.
View Article and Find Full Text PDFReproductive fitness in females is susceptible to obesogenic diets. Energy balance and reproduction are tightly regulated, in part, by hypothalamic neurons in the arcuate nucleus (ARC), and high-fat diet (HFD) can steadily increase estradiol levels in rodents. Estradiol regulates the reproductive axis via negative feedback mechanisms in ARC neurons by modulating pulsatile release of the gonadotropin luteinizing hormone (LH).
View Article and Find Full Text PDFObjective: To characterize the expression and signaling of uterine GPR83 in vivo in the nonpregnant and pregnant mouse and in vitro in human endometrial and nonendometrial cells.
Design: Controlled laboratory study.
Setting: Not applicable.
Kisspeptin-expressing neurons in the anteroventral periventricular nucleus (AVPV) and the arcuate nucleus (ARC) of the hypothalamus relay hormonal and metabolic information to gonadotropin-releasing hormone neurons, which in turn regulate pituitary and gonadal function. Phosphatase and tensin homolog (PTEN) blocks phosphatidylinositol 3-kinase (PI3K), a signaling pathway utilized by peripheral factors to transmit their signals. However, whether PTEN signaling in kisspeptin neurons helps to integrate peripheral hormonal cues to regulate gonadotropin release is unknown.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
November 2018
The effect of estrogen on the differentiation and maintenance of reproductive tissues is mediated by two nuclear estrogen receptors (ERs), ERα, and ERβ. Lack of functional ERα and ERβ genes in vivo significantly affects reproductive function; however, the target tissues and signaling pathways in the hypothalamus are not clearly defined. Here, we describe the generation and reproductive characterization of a complete-ERβ KO (CERβKO) and a GnRH neuron-specific ERβKO (GERβKO) mouse models.
View Article and Find Full Text PDFThe 3 World Conference on Kisspeptin, "Kisspeptin 2017: Brain and Beyond" was held March 30-31 at the Rosen Centre Hotel in Orlando, Florida, providing an international forum for multidisciplinary scientists to meet and share cutting-edge research on kisspeptin biology and its relevance to human health and disease. The meeting built upon previous world conferences focused on the role of kisspeptin and associated peptides in the control of gonadotropin-releasing hormone (GnRH) secretion and reproduction. Based on recent discoveries, the scope of this meeting was expanded to include functions of kisspeptin and related peptides in other physiological systems including energy homeostasis, pregnancy, ovarian and uterine function, and thermoregulation.
View Article and Find Full Text PDFDeletion of PI3K catalytic subunit p110 in adipose tissue (aP2-Cre/p110, -/- hereafter) results in increased adiposity, glucose intolerance, and liver steatosis. Because this endocrine organ releases hormones like leptin, which are important in reproductive physiology, we investigated the reproductive phenotype of -/- males. Compared to controls, -/- males displayed delayed onset of puberty accompanied by a reduction in plasma LH levels and testicular weight.
View Article and Find Full Text PDFHypothalamic kisspeptin neurons integrate and translate cues from the internal and external environments that regulate gonadotropin-releasing hormone (GnRH) secretion and maintain fertility in mammals. However, the intracellular signaling pathways utilized to translate such information into changes in kisspeptin expression, release, and ultimately activation of the kisspeptin-receptive GnRH network have not yet been identified. PI3K is an important signaling node common to many peripheral factors known to regulate kisspeptin expression and GnRH release.
View Article and Find Full Text PDF