Publications by authors named "Ariel Meyra"

Recent studies revealed anomalous underscreening in concentrated electrolytes, and we suggest that the underscreened electrostatic forces between membrane proteins play a significant role in the process of self-assembly. In this work, we assumed that the underscreened electrostatic forces compete with the thermodynamic Casimir forces induced by concentration fluctuations in the lipid bilayer, and developed a simplified model for a binary mixture of oppositely charged membrane proteins with different preference to liquid-ordered and liquid-disordered domains in the membrane. In the model, like macromolecules interact with short-range Casimir attraction and long-range electrostatic repulsion, and the cross-interaction is of the opposite sign.

View Article and Find Full Text PDF

A monolayer consisting of two types of particles, with energetically favored alternating stripes of the two components, is studied by Monte Carlo simulations and within a mesoscopic theory. We consider a triangular lattice model and assume short-range attraction and long-range repulsion between particles of the same kind, as well as short-range repulsion and long-range attraction for the cross-interaction. The structural evolution of the model upon increasing temperature is studied for equal chemical potentials of the two species.

View Article and Find Full Text PDF

Systems with short-range attraction and long-range repulsion can form ordered microphases in bulk and under confinement. In fact, confinement has been proven to be a good strategy to induce the formation of novel ordered microphases that might be appealing to the development of functional nanomaterials. Using Grand Canonical Monte Carlo (GCMC) simulations, we study a model colloidal system with competing interactions under confinement in narrow spherical shells at thermodynamic conditions under which the hexagonal phase is stable in bulk.

View Article and Find Full Text PDF

Competing interactions between charged inclusions in membranes of living organisms or charged nanoparticles in near-critical mixtures can lead to self-assembly into various patterns. Motivated by these systems, we developed a simple triangular lattice model for binary mixtures of oppositely charged particles with additional short-range attraction or repulsion between like or different particles, respectively. We determined the ground state for the system in contact with a reservoir of the particles for the whole chemical potentials plane, and the structure of self-assembled conglomerates for fixed numbers of particles.

View Article and Find Full Text PDF

Systems with short-range attraction and long-range repulsion can form ordered microphases in bulk and under confinement. Using grand canonical Monte Carlo simulations, we study a colloidal system with competing interactions under confinement in narrow spherical shells at thermodynamic conditions at which the hexagonal phase of cylindrical clusters is stable in bulk. We observe spontaneous formation of different ordered structures.

View Article and Find Full Text PDF

We study and characterize local density fluctuations of ordered and disordered hyperuniform point distributions on spherical surfaces. In spite of the extensive literature on disordered hyperuniform systems in Euclidean geometries, to date few works have dealt with the problem of hyperuniformity in curved spaces. Indeed, some systems that display disordered hyperuniformity, like the spatial distribution of photoreceptors in avian retina, actually occur on curved surfaces.

View Article and Find Full Text PDF

The relationship between hydraulic specific conductivity (k) and vulnerability to cavitation (VC) with size and number of vessels has been studied in many angiosperms. However, few of the studies link other cell types (vasicentric tracheids (VT), fibre-tracheids, parenchyma) with these hydraulic functions. Eucalyptus is one of the most important genera in forestry worldwide.

View Article and Find Full Text PDF

In light of the coarse-grained Monte Carlo numerical simulation method, the magnetosome chain stability of magnetotactic bacteria is analysed and discussed. This discrete chain of magnetic nanoparticles, encapsulated in a lipid membrane and flanked by filaments, orients bacteria in the geomagnetic field as a compass needle. Each magnetosome is a magnetite or greigite nanocrystal encapsulated in a soft lipid shell.

View Article and Find Full Text PDF

Periodical patterns of vegetation in an arid or semiarid ecosystem are described using statistical mechanics and Monte Carlo numerical simulation technique. Plants are characterized by the area that each individual occupies and a facilitation-competition pairwise interaction. Assuming that external resources (precipitation, solar radiation, nutrients, etc.

View Article and Find Full Text PDF

A theoretical treatment of some of the factors influencing air seeding at the pit membranes of xylem vessels is given. Pit membrane structure, viewed as a three-dimensional mesh of intercrossing fibrils, and vulnerability to water-stress-induced air seeding are examined in the context of the Young-Laplace equation. Simple geometrical considerations of the porous membrane show that the vapor-liquid interface curvature radius is a function of fiber-fiber distance, fiber radius, wetting angle and position of the wetting line.

View Article and Find Full Text PDF