Publications by authors named "Ariel Helms Thames"

-linked glycosylation plays a key role in the efficacy of many therapeutic proteins. One limitation to the bacterial glycoengineering of human -linked glycans is the difficulty of installing a single -acetylglucosamine (GlcNAc), the reducing end sugar of many human-type glycans, onto asparagine in a single step (-GlcNAcylation). Here, we develop an method for -GlcNAcylating proteins using the oligosaccharyltransferase PglB from .

View Article and Find Full Text PDF

Glycan-binding receptors known as lectins represent a class of potential therapeutic targets. Yet, the therapeutic potential of targeting lectins remains largely untapped due in part to limitations in tools for building glycan-based drugs. One group of desirable structures is proteins with noncanonical glycans.

View Article and Find Full Text PDF

In resource-limited settings, it can be difficult to safely deliver sensitive biologic medicines to patients due to cold chain and infrastructure constraints. Point-of-care drug manufacturing could circumvent these challenges since medicines could be produced locally and used on-demand. Toward this vision, we combine cell-free protein synthesis (CFPS) and a 2-in-1 affinity purification and enzymatic cleavage scheme to develop a platform for point-of-care drug manufacturing.

View Article and Find Full Text PDF