Easily accessible through tabletop experiments, paraxial fluids of light are emerging as promising platforms for the simulation and exploration of quantumlike phenomena. In particular, the analogy builds on a formal equivalence between the governing model for a Bose-Einstein condensate under the mean-field approximation and the model of laser propagation inside nonlinear optical media under the paraxial approximation. Yet, the fact that the role of time is played by the propagation distance in the analog system imposes strong bounds on the range of accessible phenomena due to the limited length of the nonlinear medium.
View Article and Find Full Text PDFThis article presents a review of the numerical techniques employed in simulating plasmonic optical sensors based on metal-dielectric nanostructures, including examples, ranging from conventional D-type fiber sensors, to those based on photonic crystal D-type fibers and incorporating metamaterials, nanowires, among other new materials and components, results and applications. We start from the fundamental physical processes, such as optical and plasmonic mode coupling, and discuss the implementation of the numerical model, optical response customization and their impact in sensor performance. Finally, we examine future perspectives.
View Article and Find Full Text PDFThe development of economical optical devices with a reduced footprint foreseeing manipulation, sorting and detection of single cells and other micro particles have been encouraged by cellular biology requirements. Nonetheless, researchers are still ambitious for advances in this field. This paper presents Fresnel zone and phase plates fabricated on mode expanded optical fibres for optical trapping.
View Article and Find Full Text PDFThis Letter reports a new method for the generation of optical vortices using a micropatterned optical fiber tip. Here, a spiral phase plate (2π phase shift) is micromachined on the tip of an optical fiber using a focused ion beam. This is a high resolution method that allows milling the fibers with nanoscale resolution.
View Article and Find Full Text PDFWe report on the analysis and experimental validation of the strain sensitivity dependences of a fiber Bragg grating written in standard optical fiber when combined with fused tapers. By controlling the difference between the cross sections of the fused taper and the Bragg grating, the strain sensitivity of the Bragg wavelength can be changed by acting on the gauge length. The strain sensing characteristics of an interferometric structure formed by fabricating a fused taper in the middle of a fiber Bragg grating are also reported.
View Article and Find Full Text PDFCan entanglement and the quantum behavior in physical systems survive at arbitrary high temperatures? In this Letter we show that this is the case for a electromagnetic field mode in an optical cavity with a movable mirror in a thermal state. We also identify two different dynamical regimes of generation of entanglement separated by a critical coupling strength.
View Article and Find Full Text PDF